Photoluminescence studies on the interaction of near-surface GaAs/AlxGa1−xAs quantum wells with chemical adsorbates

1996 ◽  
Vol 101 (2-3) ◽  
pp. 113-117 ◽  
Author(s):  
Yao Liu ◽  
Xu-Rui Xiao ◽  
Xue-Ping Li ◽  
Zhong-Ying Xu ◽  
Zhi-Liang Yuan ◽  
...  
2019 ◽  
Vol 3 (1) ◽  
Author(s):  
Joon Sue Lee ◽  
Borzoyeh Shojaei ◽  
Mihir Pendharkar ◽  
Mayer Feldman ◽  
Kunal Mukherjee ◽  
...  

1985 ◽  
Vol 2 (12) ◽  
pp. 529-532
Author(s):  
Xu Zhong-ying ◽  
Xu Ji-zong ◽  
Chen Zong-gui ◽  
Zhuang Wei-hua ◽  
Xu Jun-ying ◽  
...  

2001 ◽  
Vol 15 (17n19) ◽  
pp. 683-687
Author(s):  
A. SILVA-CASTILLO ◽  
F. PEREZ-RODRIGUEZ

We have applied the 45° reflectometry for the first time to study exciton-polaritons in quantum wells. The 45° reflectometry is a new polarization-modulation technique, which is based on the measurement of the difference [Formula: see text] between the p-polarization reflectivity (Rp) and the squared s-polarization reflectivity [Formula: see text] at an angle of incidence of 45°. We show that [Formula: see text] spectra may provide qualitatively new information on the exciton-polariton modes in a quantum well. These optical spectra turn out to be very sensitive to the zeros of the dielectric function along the quantum-well growth direction and, therefore, allow to identify the resonances associated with the Z exciton-polariton mode. We demonstrate that 45° reflectometry could be a powerful tool for studying Z exciton-polariton modes in near-surface quantum wells, which are difficult to observe in simple spectra of reflectivity Rp


1994 ◽  
Vol 358 ◽  
Author(s):  
Z.P. Wang ◽  
Z.X. Liu ◽  
H.X. Han ◽  
J.Q. Zhang ◽  
G.H. Li ◽  
...  

ABSTRACTWe have performed photoluminescence (PL) measurements at liquid nitrogen temperature under high pressure up to 5.5 GPa and in the temperature range 10-300 K at atmospheric pressure on {(ZnSe)30(ZnSe0.92Te0.08)30(ZnSe)30[(CdSe)1(ZnSe)2]9}x5 multiple quantum wells. The PL peaks, EB, E1 and Ew corresponding to the band edge luminescence in ZnSe barrier layer, the transitions from the first conduction subband to the heavy-hole subband in ZnSe0.92Te0.08 layers and [(CdSe)1(ZnSe)2]9 ultra short period superlattice quantum well (SPSLQW) layers have been observed. Experimental results show that ZnSe0.92Te0.08/ZnSe forms a type-I superlattice (SL) in contrast to the type-II ZnSe/ZnTe SL. The pressure coefficients of the EB, E1 and Ew exciton peaks have been determined as 67, 63 and 56 meV/GPa, respectively. With increasing temperature (or pressure), the E1 peak-intensity drastically decreases which is attributed to the thermal effect (or the appearance of many defects in ZnSe0.92Te0.08 under higher pressure).


2019 ◽  
Vol 970 ◽  
pp. 276-282
Author(s):  
Yury Borodin ◽  
Anastasia Mantina

Superlattice formation in thin layers of oxidizing crystals and the effect of near-surface proton saturation on structure ordering, formation and periodical distribution of quantum wells have been discussed. The paper shows, it is necessary to develop non-Euclidean approach to the crystal’s internal geometry and consider, in consecutive order, the question of the four-dimentional Riemannian space into three-dimentional Eucliden space interpretation (RE interpretation).


2002 ◽  
Vol 744 ◽  
Author(s):  
K.E. Waldrip ◽  
E.D. Jones ◽  
N.A. Modine ◽  
F. Jalali ◽  
J.F. Klem ◽  
...  

We present low-temperature (T = 4K) photoluminescence studies of the effect of adding nitrogen to 6-nm-wide single-strained GaAsSb quantum wells on GaAs. The samples were grown by both MBE and MOCVD tech-niques. The nominal Sb concentration is about 30%. Adding about 1 to 2% N drastically reduced the bandgap energies from 1 to 0.75 eV, or 1.20 to 1.64 μm. Upon performing ex situ rapid thermal anneals, 825°C for 10s, the band gap energies as well as the photoluminescence intensities increased. The intensities increased by an order of magnitude for the annealed samples and the band gap energies increased by about 50 - 100 meV, depending on growth temperatures. The photoluminescence linewidths tended to decrease upon annealing. Preliminary results of a first-principles band structure calculation for the GaAsSbN system are also presented.


Sign in / Sign up

Export Citation Format

Share Document