Structural connectivity and nonperiodic synchronization in large-scale networks of spiking neurons.

NeuroImage ◽  
2009 ◽  
Vol 47 ◽  
pp. S147
Author(s):  
M Rubinov ◽  
JP Thivierge ◽  
O Sporns ◽  
M Breaskpear

2020 ◽  
Author(s):  
Simon Leipold ◽  
Carina Klein ◽  
Lutz Jäncke

AbstractProfessional musicians are a popular model for investigating experience-dependent plasticity in human large-scale brain networks. A minority of musicians possess absolute pitch, the ability to name a tone without reference. The study of absolute pitch musicians provides insights into how a very specific talent is reflected in brain networks. Previous studies of the effects of musicianship and absolute pitch on large-scale brain networks have yielded highly heterogeneous findings regarding the localization and direction of the effects. This heterogeneity was likely influenced by small samples and vastly different methodological approaches. Here, we conducted a comprehensive multimodal assessment of effects of musicianship and absolute pitch on intrinsic functional and structural connectivity using a variety of commonly employed and state-of-the-art multivariate methods in the largest sample to date (n = 153 female and male human participants; 52 absolute pitch musicians, 51 non-absolute pitch musicians, and 50 non-musicians). Our results show robust effects of musicianship in inter- and intrahemispheric connectivity in both structural and functional networks. Crucially, most of the effects were replicable in both musicians with and without absolute pitch when compared to non-musicians. However, we did not find evidence for an effect of absolute pitch on intrinsic functional or structural connectivity in our data: The two musician groups showed strikingly similar networks across all analyses. Our results suggest that long-term musical training is associated with robust changes in large-scale brain networks. The effects of absolute pitch on neural networks might be subtle, requiring very large samples or task-based experiments to be detected.Significance StatementA question that has fascinated neuroscientists, psychologists, and musicologists for a long time is how musicianship and absolute pitch, the rare talent to name a tone without reference, are reflected in large-scale networks of the human brain. Much is still unknown as previous studies have reported widely inconsistent results based on small samples. Here, we investigate the largest sample of musicians and non-musicians to date (n = 153) using a multitude of established and novel analysis methods. Results provide evidence for robust effects of musicianship on functional and structural networks that were replicable in two separate groups of musicians and independent of absolute pitch ability.



Entropy ◽  
2021 ◽  
Vol 23 (9) ◽  
pp. 1185
Author(s):  
Silvia Ghirga ◽  
Letizia Chiodo ◽  
Riccardo Marrocchio ◽  
Javier G. Orlandi ◽  
Alessandro Loppini

The comprehension of neuronal network functioning, from most basic mechanisms of signal transmission to complex patterns of memory and decision making, is at the basis of the modern research in experimental and computational neurophysiology. While mechanistic knowledge of neurons and synapses structure increased, the study of functional and effective networks is more complex, involving emergent phenomena, nonlinear responses, collective waves, correlation and causal interactions. Refined data analysis may help in inferring functional/effective interactions and connectivity from neuronal activity. The Transfer Entropy (TE) technique is, among other things, well suited to predict structural interactions between neurons, and to infer both effective and structural connectivity in small- and large-scale networks. To efficiently disentangle the excitatory and inhibitory neural activities, in the article we present a revised version of TE, split in two contributions and characterized by a suited delay time. The method is tested on in silico small neuronal networks, built to simulate the calcium activity as measured via calcium imaging in two-dimensional neuronal cultures. The inhibitory connections are well characterized, still preserving a high accuracy for excitatory connections prediction. The method could be applied to study effective and structural interactions in systems of excitable cells, both in physiological and in pathological conditions.



2021 ◽  
Author(s):  
Miguel Dasilva ◽  
Christian Brandt ◽  
Marc Alwin Gieselmann ◽  
Claudia Distler ◽  
Alexander Thiele

Abstract Top-down attention, controlled by frontal cortical areas, is a key component of cognitive operations. How different neurotransmitters and neuromodulators flexibly change the cellular and network interactions with attention demands remains poorly understood. While acetylcholine and dopamine are critically involved, glutamatergic receptors have been proposed to play important roles. To understand their contribution to attentional signals, we investigated how ionotropic glutamatergic receptors in the frontal eye field (FEF) of male macaques contribute to neuronal excitability and attentional control signals in different cell types. Broad-spiking and narrow-spiking cells both required N-methyl-D-aspartic acid and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor activation for normal excitability, thereby affecting ongoing or stimulus-driven activity. However, attentional control signals were not dependent on either glutamatergic receptor type in broad- or narrow-spiking cells. A further subdivision of cell types into different functional types using cluster-analysis based on spike waveforms and spiking characteristics did not change the conclusions. This can be explained by a model where local blockade of specific ionotropic receptors is compensated by cell embedding in large-scale networks. It sets the glutamatergic system apart from the cholinergic system in FEF and demonstrates that a reduction in excitability is not sufficient to induce a reduction in attentional control signals.



Author(s):  
Michael Mitzenmacher ◽  
Jakub Pachocki ◽  
Richard Peng ◽  
Charalampos Tsourakakis ◽  
Shen Chen Xu


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Arian Ashourvan ◽  
Preya Shah ◽  
Adam Pines ◽  
Shi Gu ◽  
Christopher W. Lynn ◽  
...  

AbstractA major challenge in neuroscience is determining a quantitative relationship between the brain’s white matter structural connectivity and emergent activity. We seek to uncover the intrinsic relationship among brain regions fundamental to their functional activity by constructing a pairwise maximum entropy model (MEM) of the inter-ictal activation patterns of five patients with medically refractory epilepsy over an average of ~14 hours of band-passed intracranial EEG (iEEG) recordings per patient. We find that the pairwise MEM accurately predicts iEEG electrodes’ activation patterns’ probability and their pairwise correlations. We demonstrate that the estimated pairwise MEM’s interaction weights predict structural connectivity and its strength over several frequencies significantly beyond what is expected based solely on sampled regions’ distance in most patients. Together, the pairwise MEM offers a framework for explaining iEEG functional connectivity and provides insight into how the brain’s structural connectome gives rise to large-scale activation patterns by promoting co-activation between connected structures.



2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Siddharth Arora ◽  
Alexandra Brintrup

AbstractThe relationship between a firm and its supply chain has been well studied, however, the association between the position of firms in complex supply chain networks and their performance has not been adequately investigated. This is primarily due to insufficient availability of empirical data on large-scale networks. To addresses this gap in the literature, we investigate the relationship between embeddedness patterns of individual firms in a supply network and their performance using empirical data from the automotive industry. In this study, we devise three measures that characterize the embeddedness of individual firms in a supply network. These are namely: centrality, tier position, and triads. Our findings caution us that centrality impacts individual performance through a diminishing returns relationship. The second measure, tier position, allows us to investigate the concept of tiers in supply networks because we find that as networks emerge, the boundaries between tiers become unclear. Performance of suppliers degrade as they move away from the focal firm (i.e., Toyota). The final measure, triads, investigates the effect of buying and selling to firms that supply the same customer, portraying the level of competition and cooperation in a supplier’s network. We find that increased coopetition (i.e., cooperative competition) is a performance enhancer, however, excessive complexity resulting from being involved in both upstream and downstream coopetition results in diminishing performance. These original insights help understand the drivers of firm performance from a network perspective and provide a basis for further research.



2017 ◽  
Vol 10 (4) ◽  
pp. 1-27 ◽  
Author(s):  
Thiem Van Chu ◽  
Shimpei Sato ◽  
Kenji Kise


2009 ◽  
Vol 10 (1) ◽  
pp. 19 ◽  
Author(s):  
Tatsunori B Hashimoto ◽  
Masao Nagasaki ◽  
Kaname Kojima ◽  
Satoru Miyano




Sign in / Sign up

Export Citation Format

Share Document