scholarly journals Long-term, predation-based control of a central-west North Sea zooplankton community

2003 ◽  
Vol 60 (2) ◽  
pp. 187-197 ◽  
Author(s):  
Robin A Clark ◽  
Chris L.J Frid ◽  
Kirsty R Nicholas

Abstract Long-term monitoring of the zooplankton community at a station 5.5 miles from the English coast in the central-west North Sea has been performed since 1968. Analyses of these data have revealed an inverse relationship between annual total zooplankton abundance and the position of the Gulf Stream North Wall (GSNW). This long-term relationship is opposite to the long-term positive association observed between the GSNW and total zooplankton abundances throughout most of the oceanic NE Atlantic region and the northern and central North Sea using Continuous Plankton Recorder data. This study investigates the mechanism behind the inverse relationship with the GSNW, focussing on the importance of zooplankton predators in influencing long-term changes in the zooplankton community of the central-west North Sea. The results suggest that the dominant zooplankton predator Sagitta elegans plays a key role in mediating spring copepod population growth rates and thus their maximum and overall productivity during any one particular year. In turn, the abundance of Sagitta during the spring appears to be related to climatic factors. The implications of this on the zooplankton community are discussed.

2004 ◽  
Vol 61 (4) ◽  
pp. 492-500 ◽  
Author(s):  
M. Luz Fernández de Puelles ◽  
Joaquín Valencia ◽  
Laura Vicente

Abstract The long-term and seasonal changes in biomass and zooplankton abundance at a station off Mallorca Island (Balearic Sea) were studied in relation to the main physical and chemical conditions. The results are based on a total of 276 samples collected every 10 days during 8 years by means of oblique hauls from bottom to surface. At this neritic station (77-m depth) located in a hydrographic area between northern Mediterranean and Atlantic southern waters, salinity ranged from 37 to 38.4 psu and temperature from 13.4°C (February 1996) to 27.4°C (August 1998). With the exception of salinity, the other environmental parameters and the most abundant zooplankton groups showed irregular but seasonal cycles. Interannual variability was also observed, with higher zooplankton abundance during the cooler and more saline years when the influence of northern water was stronger. Zooplankton abundance decreased during a warm period in 1998. Copepods were the most abundant group (54%) and their abundance was significantly correlated with temperature (negatively) and salinity (positively). Here, we summarize the changes in the zooplankton community abundance and how hydrographic forcing and other climatic factors have changed during the period from 1994 to 2001 in the Balearic Sea (Western Mediterranean).


Author(s):  
Seòna R Wells ◽  
Eileen Bresnan ◽  
Kathryn Cook ◽  
Dafne Eerkes-Medrano ◽  
Margarita Machairopoulou ◽  
...  

Abstract Major changes in North Atlantic zooplankton communities in recent decades have been linked to climate change but the roles of environmental drivers are often complex. High temporal resolution data is required to disentangle the natural seasonal drivers from additional sources of variability in highly heterogeneous marine systems. Here, physical and plankton abundance data spanning 2003–2017 from a weekly long-term monitoring site on the west coast of Scotland were used to investigate the cause of an increasing decline to approximately -80± 5% in annual average total zooplankton abundance from 2011 to 2017. Generalized additive mixed models (GAMMs), with an autoregressive correlation structure, were used to examine seasonal and inter-annual trends in zooplankton abundance and their relationship with environmental variables. Substantial declines were detected across all dominant taxa, with ∼ 30–70% of the declines in abundance explained by a concurrent negative trend in salinity, alongside the seasonal cycle, with the additional significance of food availability found for some taxa. Temperature was found to drive seasonal variation but not the long-term trends in the zooplankton community. The reduction in salinity had the largest effect on several important taxa. Salinity changes could partly be explained by locally higher freshwater run-off driven by precipitation as well as potential links to changes in offshore water masses. The results highlight that changes in salinity, caused by either freshwater input (expected from climate predictions) or fresher offshore water masses, may adversely impact coastal zooplankton communities and the predators that depend on them.


2019 ◽  
Vol 76 (Supplement_1) ◽  
pp. i10-i23
Author(s):  
Irina P Prokopchuk ◽  
Alexander G Trofimov

Abstract Our research focused on the analysis of interannual variability of zooplankton in the Kola Section (the Barents Sea) in the period of current warming in the Arctic basing on previously unpublished data. The zooplankton community was investigated based on the analysis of 240 plankton samples, collected in late May–early June 2009–2017. A total of 74 zooplankton taxa of nine phyla were identified in the plankton samples, but copepods were the most diverse and numerous taxonomic group. The biodiversity index varied considerably from year to year, but a stable tendency for the index to increase since the beginning of the period studied was observed. Copepods dominated in terms of abundance and biomass, comprising on average 73–96% of the total zooplankton abundance and 81–96% of the total zooplankton biomass. Calanus finmarchicus was the main zooplankton species utterly dominated by abundance and biomass (on average 92 and 97% respectively). Considerable differences in zooplankton abundance and biomass at different stations of the section were observed. Although the investigations were carried out during a warming period, interannual differences in zooplankton abundance and biomass were observed. Zooplankton biomasses were higher in the years with higher temperatures and stronger water inflow.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11032
Author(s):  
Jason C. Doll ◽  
Stephen J. Jacquemin

The objective of this study was to evaluate long term trends of fish taxa in southern Lake Michigan while incorporating their functional roles to improve our understanding of ecosystem level changes that have occurred in the system over time. The approach used here highlighted the ease of incorporating ecological mechanisms into population models so researchers can take full advantage of available long-term ecosystem information. Long term studies of fish assemblages can be used to inform changes in community structure resulting from perturbations to aquatic systems and understanding these changes in fish assemblages can be better contextualized by grouping species according to functional groups that are grounded in niche theory. We hypothesized that describing the biological process based on partial pooling of information across functional groups would identify shifts in fish assemblages that coincide with major changes in the ecosystem (e.g., for this study, shifts in zooplankton abundance over time). Herein, we analyzed a long-term Lake Michigan fisheries dataset using a multi-species state space modeling approach within a Bayesian framework. Our results suggested the population growth rates of planktivores and benthic invertivores have been more variable than general invertivores over time and that trends in planktivores can be partially explained by ecosystem changes in zooplankton abundance. Additional work incorporating more ecosystem parameters (e.g., primary production, etc.) should be incorporated into future iterations of this novel modeling concept.


1999 ◽  
Vol 56 (10) ◽  
pp. 1865-1872 ◽  
Author(s):  
Eva Wahlström ◽  
Erika Westman

In order to study density-dependent effects of invertebrate planktivory, four different densities of Bythotrephes longimanus were inoculated into mesocosm enclosures with a mixed zooplankton community. Changes in size structure and abundance of zooplankton and phytoplankton communities were recorded over a period of 3 weeks. High densities of Bythotrephes were able to reduce total zooplankton abundance, which was mainly due to a decrease in the density of the relatively large species Holopedium gibberum. The density of the smaller species Bosmina longirostris was also reduced with increasing densities of Bythotrephes, whereas rotifer abundance remained largely unaffected. The mean size of Holopedium increased with increasing densities of Bythotrephes. Despite the decrease in total zooplankton biomass in high-Bythotrephes treatments, no effect of Bythotrephes density on primary producers was observed. Our experiment shows that predacious cladocerans may reduce macrozooplankton biomass, large as well as small species. Predation from invertebrate planktivores results in a zooplankton community consisting of larger individuals. Comparing our experimental densities with densities of Bythotrephes found in natural systems suggests that invertebrate planktivores may influence size structure and abundance of zooplankton communities even in lakes with planktivorous fish.


2008 ◽  
Vol 65 (3) ◽  
pp. 318-324 ◽  
Author(s):  
George Wiafe ◽  
Hawa B. Yaqub ◽  
Martin A. Mensah ◽  
Christopher L. J. Frid

Abstract Wiafe, G., Yaqub, H. B., Mensah, M. A., and Frid, C. L. J. 2008. Impact of climate change on long-term zooplankton biomass in the upwelling region of the Gulf of Guinea. – ICES Journal of Marine Science, 65: 318–324. We investigated long-term changes in coastal zooplankton in the upwelling region in the Gulf of Guinea, 1969–1992, in relation to climatic and biotic factors. We considered the role of hydrographic and climatic factors, i.e. sea surface temperature (SST), salinity, sea level pressure, windfield, and Southern Oscillation Index (SOI), in the long-term variation of zooplankton in a multiple regression analysis, along with the abundance of Sardinella. Annual variation in zooplankton biomass was cyclical, with the annual peak occurring during the major upwelling season, July–September. Over the 24-year period, there was a downward trend in zooplankton biomass (equivalent to 6.33 ml per 1000 m3 per year). The decomposed trend in SST during the major upwelling revealed gradual warming of surface waters. This trend was believed to be the main influence on the abundance of the large copepod Calanoides carinatus (sensitive to temperatures above 23°C), which appears in the coastal waters only during the major upwelling season. The warming trend associated with global climate change could affect zooplankton community structure, especially during the major upwelling season. Global warming coupled with “top–down” (predation) control by Sardinella might be responsible for the long-term decline in zooplankton biomass in the upwelling region of the Gulf of Guinea.


2016 ◽  
Vol 77 (2) ◽  
pp. 402-412 ◽  
Author(s):  
P. H. S. Picapedra ◽  
C. Fernandes ◽  
F. A. Lansac-Tôha

Abstract The objective of the present work is to evaluate the seasonal patterns of species richness and abundance of the zooplankton community in a semi-arid river, Northeastern of Brazil. Zooplankton samples were taken in four hydrological periods along the Upper Parnaíba River: April (low), August (dry), November (rising) 2013 and January (flood) 2014. The zooplankton community consisted of 125 species; the testate amoebae was the most species-rich (56 species) and the most abundant group (71.5%) of total zooplankton abundance. Season-specific differences were highly significant. The overall zooplankton richness and abundance was significantly higher during the low (71 species) and flood (878.47 ind.m–3) period, respectively. The hydrological regime was important in structuring the zooplankton community, emphasising the importance of the Parnaíba River and its seasonal variation for biodiversity conservation in the Brazilian semi-arid region.


Author(s):  
Rasma Deksne ◽  
Margarita Božko ◽  
Jekaterina Kuzmina ◽  
Andris Linužs

During seasonal studies 2012 (August/October), samples of zooplankton were collected and analyzed according standard method. Chemical quality of the Rezekne River's water investigated. Changes of quantitative and qualitative characteristics, saprobity index, species diversity (Shannon- Wiener index) and Renkonen index were employed for the analysis of zooplankton community structure in the Rezekne River. The Rezekne River saprobity varies from o – saprobity to β – mesosaprobity. The lowest ecological quality was determined in the leg of the Rezekne River in the territory of Rezekne city, which characterises with decrease in the total zooplankton abundance and species diversity according to Shannon - Wiener index, increase of saprobity.


2011 ◽  
Vol 8 (1) ◽  
pp. 593-629 ◽  
Author(s):  
C. H. Hsieh ◽  
Y. Sakai ◽  
S. Ban ◽  
K. Ishikawa ◽  
T. Ishikawa ◽  
...  

Abstract. We compiled and analyzed long-term (1961–2005) zooplankton community data in response to environmental variations in Lake Biwa. Environmental data indicate that Lake Biwa had experienced eutrophication (according to total phosphorus concentration) in the late 1960s and recovered to a normal trophic status around 1985, and then exhibited warming since 1990. Total zooplankton abundance showed a significant correlation with total phytoplankton biomass. Following a classic pattern, cladoceran/calanoid and cyclopoid/calanoid abundance ratio was related positively to eutrophication. Zooplankton community exhibited a significant response to the boom and bust of phytoplankton biomass as a consequence of eutrophication-reoligotriphication and warming. Moreover, our analyses suggest that the Lake Biwa ecosystem exhibited a hierarchical response across trophic levels; that is, higher trophic levels may show a more delayed response or no response to eutrophication than lower ones. We tested the hypothesis that phytoplankton community can better explain the variation of zooplankton community than bulk environmental variables, considering that phytoplankton community may directly affects zooplankton succession through predator-prey interactions. Using a variance partition approach, however, we did not find strong evidence to support this hypothesis. We further aggregate zooplankton according to their feeding types (herbivorous, carnivorous, omnivorous, and parasitic) and taxonomic groups, and analyzed the aggregated data. While the pattern remains similar, the results are less clear comparing with the results based on finely resolved data. Our research explored the efficacy of using zooplankton as bio-indicators to environmental changes at various data resolutions.


2018 ◽  
Vol 18 (1) ◽  
pp. 28-36 ◽  
Author(s):  
Vladimir Dvoretskiy ◽  
Alexander Dvoretskiy

The Barents Sea is a highly productive shelf region. Zooplankton assemblages are a key component of the carbon cycle in Arctic marine ecosystems; they transfer energy from lower trophic levels to higher levels, including larval and young commercial fish. The winter state of the zooplankton community in the Central Through and their slopes (Barents Sea) was investigated in late November 2010. Vertical structure of water layer was characterised by pycnocline located below 80 m. The upper strata were occupied by transformed Atlantic Water, while winter Barents Sea Water with negative temperatures was in the bottom strata. Total zooplankton abundance varied from 162 to 1214 individuals/m3. Biomass ranged from 88 to 799 mg wet mass/m3. Copepods dominated in terms of total zooplankton abundance (average 99%) and biomass (92%). Maximum densities of Calanusfinmarchicus and Calanusglacialis were registered in the frontal zone separating warm and cold water masses. Abundances of Metridialonga and O.similis were highest in cold waters. Three groups of stations differing in terms of the common copepod composition were delineated with cluster analysis. The age structure of Calanusfinmarchicus and Metridialonga was characterised by a prevalence of copepodites IV–V. Total zooplankton abundance and biomass were correlated to water temperature and salinity, suggesting that hydrological conditions were the key driver of spatial variations of the zooplankton communities. High biomass of large copepods suggests potential significance of the investigated region for feeding of young and adult fish.


Sign in / Sign up

Export Citation Format

Share Document