scholarly journals Reconstitution of Human Arp2/3 Complex Reveals Critical Roles of Individual Subunits in Complex Structure and Activity

2001 ◽  
Vol 8 (5) ◽  
pp. 1041-1052 ◽  
Author(s):  
Helene Gournier ◽  
Erin D. Goley ◽  
Hanspeter Niederstrasser ◽  
Thong Trinh ◽  
Matthew D. Welch
Gesnerus ◽  
2007 ◽  
Vol 64 (1-2) ◽  
pp. 24-53
Author(s):  
Christine Debue-Barazer

The synthetic local anaesthetic Stovaïne® was commercialised in France in 1904. Its inventor, Ernest Fourneau, began his career as a pharmaceutical chemist in organic chemistry laboratories in Germany, where from 1899 to 1901 he discovered how basic research could benefit from the modern chemistry theories which had developed in Germany starting in the 1860s. Using the complex structure of cocaine, he invented an original molecule, with comparable activity, but less toxic. The knowledge and the know-how which he acquired in Germany nourished his reflection in the field of the chemistry of the relationships between structure and activity, and led him to the development of Stovaïne®. Emile Roux, Director of the Pasteur Institute in Paris,was interested in his work and invited him to head the first French therapeutic chemistry laboratory, in which research on medicinal chemistry was organised scientifically. The industrial development of new medicines resulting from the Pasteur Institute’s therapeutic chemistry laboratory was supported by the Etablissements Poulenc frères, France thus gaining international reputation in the domain of pharmaceutical chemistry.


Author(s):  
V.V. Rybin ◽  
E.V. Voronina

Recently, it has become essential to develop a helpful method of the complete crystallographic identification of fine fragmented crystals. This was maainly due to the investigation into structural regularity of large plastic strains. The method should be practicable for determining crystallographic orientation (CO) of elastically stressed micro areas of the order of several micron fractions in size and filled with λ>1010 cm-2 density dislocations or stacking faults. The method must provide the misorientation vectors of the adjacent fragments when the angle ω changes from 0 to 180° with the accuracy of 0,3°. The problem is that the actual electron diffraction patterns obtained from fine fragmented crystals are the superpositions of reflections from various fragments, though more than one or two reflections from a fragment are hardly possible. Finally, the method should afford fully automatic computerized processing of the experimental results.The proposed method meets all the above requirements. It implies the construction for a certain base position of the crystal the orientation matrix (0M) A, which gives a single intercorrelation between the coordinates of the unity vector in the reference coordinate system (RCS) and those of the same vector in the crystal reciprocal lattice base : .


Author(s):  
W. Chiu ◽  
M.F. Schmid ◽  
T.-W. Jeng

Cryo-electron microscopy has been developed to the point where one can image thin protein crystals to 3.5 Å resolution. In our study of the crotoxin complex crystal, we can confirm this structural resolution from optical diffractograms of the low dose images. To retrieve high resolution phases from images, we have to include as many unit cells as possible in order to detect the weak signals in the Fourier transforms of the image. Hayward and Stroud proposed to superimpose multiple image areas by combining phase probability distribution functions for each reflection. The reliability of their phase determination was evaluated in terms of a crystallographic “figure of merit”. Grant and co-workers used a different procedure to enhance the signals from multiple image areas by vector summation of the complex structure factors in reciprocal space.


Author(s):  
S. Tai

Extensive cytological and histological research, correlated with physiological experimental analysis, have been done on the anterior pituitaries of many different vertebrates which have provided the knowledge to create the concept that specific cell types synthesize, store and release their specific hormones. These hormones are stored in or associated with granules. Nevertheless, there are still many doubts - that need further studies, specially on the ultrastructure and physiology of these endocrine cells during the process of synthesis, transport and secretion, whereas some new methods may provide the information about the intracellular structure and activity in detail.In the present work, ultrastructural study of the hormone-secretory cells of chicken pituitaries have been done by using TEM as well as HR-SEM, to correlate the informations obtained from 2-dimensional TEM micrography with the 3-dimensional SEM topographic images, which have a continous surface with larger depth of field that - offers the adventage to interpretate some intracellular structures which were not possible to see using TEM.


2019 ◽  
Vol 15 (S354) ◽  
pp. 189-194
Author(s):  
J. B. Climent ◽  
J. C. Guirado ◽  
R. Azulay ◽  
J. M. Marcaide

AbstractWe report the results of three VLBI observations of the pre-main-sequence star AB Doradus A at 8.4 GHz. With almost three years between consecutive observations, we found a complex structure at the expected position of this star for all epochs. Maps at epochs 2007 and 2010 show a double core-halo morphology while the 2013 map reveals three emission peaks with separations between 5 and 18 stellar radii. Furthermore, all maps show a clear variation of the source structure within the observing time. We consider a number of hypothesis in order to explain such observations, mainly: magnetic reconnection in loops on the polar cap, a more general loop scenario and a close companion to AB Dor A.


2020 ◽  
Vol 477 (1) ◽  
pp. 173-189 ◽  
Author(s):  
Marco Pedretti ◽  
Carolina Conter ◽  
Paola Dominici ◽  
Alessandra Astegno

Arabidopsis centrin 2, also known as calmodulin-like protein 19 (CML19), is a member of the EF-hand superfamily of calcium (Ca2+)-binding proteins. In addition to the notion that CML19 interacts with the nucleotide excision repair protein RAD4, CML19 was suggested to be a component of the transcription export complex 2 (TREX-2) by interacting with SAC3B. However, the molecular determinants of this interaction have remained largely unknown. Herein, we identified a CML19-binding site within the C-terminus of SAC3B and characterized the binding properties of the corresponding 26-residue peptide (SAC3Bp), which exhibits the hydrophobic triad centrin-binding motif in a reversed orientation (I8W4W1). Using a combination of spectroscopic and calorimetric experiments, we shed light on the SAC3Bp–CML19 complex structure in solution. We demonstrated that the peptide interacts not only with Ca2+-saturated CML19, but also with apo-CML19 to form a protein–peptide complex with a 1 : 1 stoichiometry. Both interactions involve hydrophobic and electrostatic contributions and include the burial of Trp residues of SAC3Bp. However, the peptide likely assumes different conformations upon binding to apo-CML19 or Ca2+-CML19. Importantly, the peptide dramatically increases the affinity for Ca2+ of CML19, especially of the C-lobe, suggesting that in vivo the protein would be Ca2+-saturated and bound to SAC3B even at resting Ca2+-levels. Our results, providing direct evidence that Arabidopsis SAC3B is a CML19 target and proposing that CML19 can bind to SAC3B through its C-lobe independent of a Ca2+ stimulus, support a functional role for these proteins in TREX-2 complex and mRNA export.


2019 ◽  
Vol 476 (21) ◽  
pp. 3227-3240 ◽  
Author(s):  
Shanshan Wang ◽  
Yanxiang Zhao ◽  
Long Yi ◽  
Minghe Shen ◽  
Chao Wang ◽  
...  

Trehalose-6-phosphate (T6P) synthase (Tps1) catalyzes the formation of T6P from UDP-glucose (UDPG) (or GDPG, etc.) and glucose-6-phosphate (G6P), and structural basis of this process has not been well studied. MoTps1 (Magnaporthe oryzae Tps1) plays a critical role in carbon and nitrogen metabolism, but its structural information is unknown. Here we present the crystal structures of MoTps1 apo, binary (with UDPG) and ternary (with UDPG/G6P or UDP/T6P) complexes. MoTps1 consists of two modified Rossmann-fold domains and a catalytic center in-between. Unlike Escherichia coli OtsA (EcOtsA, the Tps1 of E. coli), MoTps1 exists as a mixture of monomer, dimer, and oligomer in solution. Inter-chain salt bridges, which are not fully conserved in EcOtsA, play primary roles in MoTps1 oligomerization. Binding of UDPG by MoTps1 C-terminal domain modifies the substrate pocket of MoTps1. In the MoTps1 ternary complex structure, UDP and T6P, the products of UDPG and G6P, are detected, and substantial conformational rearrangements of N-terminal domain, including structural reshuffling (β3–β4 loop to α0 helix) and movement of a ‘shift region' towards the catalytic centre, are observed. These conformational changes render MoTps1 to a ‘closed' state compared with its ‘open' state in apo or UDPG complex structures. By solving the EcOtsA apo structure, we confirmed that similar ligand binding induced conformational changes also exist in EcOtsA, although no structural reshuffling involved. Based on our research and previous studies, we present a model for the catalytic process of Tps1. Our research provides novel information on MoTps1, Tps1 family, and structure-based antifungal drug design.


1979 ◽  
Vol 42 (05) ◽  
pp. 1452-1459 ◽  
Author(s):  
Robert H Yue ◽  
Toby Starr ◽  
Menard M Gertler

SummaryCommercial porcine heparin can be separated into three distinct subtractions by using DEAE-cellulose chromatography and a stepped salt gradient. Gram quantities of heparin can be fractionated by this technique. All three heparin subtractions can accelerate the inhibition of thrombin by antithrombin III with different efficiency. The specific activities of the high activity heparin, intermediate activity heparin and low activity heparin are 228 units/mg, 142 units/mg and 95 units/mg, respectively. Both the uronic acid content and the quantity of N-SO4 for all three heparin subfractions have been evaluated. The high activity heparin has the lowest uronic acid and N-SO4 content. The successful separation of commercial heparin into three distinct subfractions by means of ion-exchange chromatography suggests that the net charge on these three heparin components will serve as a model system in the elucidation of the structure and activity relationship to the biological function of heparin.


Sign in / Sign up

Export Citation Format

Share Document