Preliminary Study of Fluid Inclusions in the High-Grade Metamorphic Rocks of Sri Lanka

2001 ◽  
Vol 4 (4) ◽  
pp. 803
Author(s):  
Junji Torimoto ◽  
Hiroharu Matsueda ◽  
Sachihiro Taguchi ◽  
Takamura Tsuchiya
1993 ◽  
Vol 114 (4) ◽  
pp. 519-532 ◽  
Author(s):  
Christos Evangelakakis ◽  
Herbert Kroll ◽  
Gerhard Voll ◽  
Hans-Rudolf Wenk ◽  
Hu Meisheng ◽  
...  

2020 ◽  
Vol 61 (6) ◽  
Author(s):  
Ronald J Bakker ◽  
Evgenii Pushkarev ◽  
Anna P Biryuzova

Abstract High-grade metamorphic rocks underlying the intrusive layered dunite–pyroxenite–gabbronorite East-Khabarny Complex (EKC) are integrated in the complex Khabarny mafic–ultramafic Massif in the Sakmara Allochthon zone in the Southern Urals. These rocks are associated with high-temperature shear zones. Garnetites from the upper part of the metamorphic unit close to the contact with EKC gabbronorite are chemically and texturally analysed to estimate their formation conditions and fluid regime. Fluids provide crucial information of formation conditions and evolution of these garnetites during high-grade metamorphism, and are preserved in channel positions within Si6O1812- rings of cordierite, and in fluid inclusions in quartz and garnet. Minerals and fluid inclusions of the garnetites are studied with X-ray fluorescence spectrometry, electron microprobe analyses, Raman spectroscopy, and microthermometry. The garnetites mainly consist of garnet (up to 80 vol. %), cordierite and quartz. Accessory minerals are rutile, ilmenite, graphite, magnetite and cristobalite. Granulite-facies metamorphic conditions of the garnetites are estimated with the garnet–cordierite–sillimanite–quartz geothermobarometer: temperatures of 740 to 830 ˚C and pressures of 770–845 MPa. The average garnet composition in end-member concentrations is 48·5 mole % almandine (±3·9), 34·7 mole % pyrope (±3·3), 10·3 mole % spessartine (±1·1), 1·8 mole % grossular (±1·5), and 1·5 mole % andradite (±1·5). The cordierite electron microprobe analyses reveal an average Mg2+ fraction of 0·79 ± 0·01 in the octahedral site. Relicts of a strong positive temperature anomaly (up to 1000 ˚C) are evidenced by the preservation of cristobalite crystals in garnet and the high titanium content of quartz (0·031 ± 0·008 mass % TiO2) and garnet (0·31 ± 0·16 mole % end-member Schorlomite-Al). The fluid components H2O, CO2, N2 and H2S are detected in cordierite, which correspond to a relatively oxidized fluid environment that is common in granulites. In contrast, a highly reduced fluid environment is preserved in fluid inclusions in quartz nodules, which are mono-fluid phase at room temperature and composed of CH4 (>96 mole %) with locally minor amounts of C2H6, N2, H2S and graphite. The fluid inclusions occur in homogeneous assemblages with a density of 0·349 to 0·367 g·cm-3. The CH4-rich fluid may represent peak-temperature metamorphic conditions, and is consistent with temperature estimation (∼1000 ˚C) from Ti-in-garnet and Ti-in-quartz geothermometry. Tiny CH4-rich fluid inclusions (diameter 0·5 to 2 µm) are also detected by careful optical analyses in garnet and at the surface of quartz crystals that are included in garnet grains. Graphite in fluid inclusions precipitated at retrograde metamorphic conditions around 300–310 ± 27 ˚C. Aragonite was trapped simultaneously with CH4-rich fluids and is assumed to have crystallized at metastable conditions. The initial granulite facies conditions that led to the formation of a cordierite and garnet mineral assemblage must have occurred in a relative oxidized environment (QFM-buffered) with H2O–CO2-rich fluids. Abundant intrusions or tectonic emplacement of mafic to ultramafic melts from the upper mantle that were internally buffered at a WI-buffered (wüstite–iron) level must have released abundant hot CH4-rich fluids that flooded and subsequently dominated the system. The origin of the granulite-facies conditions is similar to peak-metamorphic conditions in the Salda complex (Central Urals) and the Ivrea–Verbano zone (Italian Alps) as a result of magmatic underplating that provided an appearance of a positive thermal anomaly, and further joint emplacement (magmatic and metamorphic rocks together) into upper crustal level as a high temperature plastic body (diapir).


1992 ◽  
Vol 29 (10) ◽  
pp. 2309-2327 ◽  
Author(s):  
Robert P. Moritz ◽  
Serge R. Chevé

The high-grade metamorphic rocks of the Ashuanipi complex have been the subject of a microthermometric fluid-inclusion study. Four types of fluid inclusions were observed: CO2-rich fluids; low-temperature, high-salinity H2O fluids; CH4 ± N2-rich fluids; and high-temperature, low-salinity H2O fluids. The regionally distributed CO2-rich fluids are the earliest fluids, and their calculated isochores indicate a clockwise post-peak metamorphic P–T–t path for the Ashuanipi complex. The low-temperature, high-salinity aqueous fluid inclusions are also distributed regionally and can be interpreted as late brines, retrograde metamorphic fluids, or the wicked-off aqueous component of H2O–CO2 fluid inclusions. Both CH4 ± N2-rich fluids and the high-temperature, low-salinity aqueous fluid inclusions were found only locally in gold-bearing metamorphosed banded iron formations. Fluid-inclusion microthermometry, arsenopyrite thermometry, and metamorphic petrologic study at Lac Lilois, one of the principal gold showings, suggest that some gold deposition may have occurred during regional post-peak metamorphic exhumation and cooling at P–T conditions near the amphibolite–greenschist transition. However, it is possible that gold deposition began at higher near-peak metamorphic P–T conditions. Another major gold showing, Arsène, is characterized by CH4 ± N2-rich fluid inclusions, tentatively inferred to be either directly related to gold deposition or responsible for secondary gold enrichment. The association of CH4 ± N2-rich fluids with gold occurrences in the Ashuanipi complex is comparable to gold deposits of the Abitibi greenstone belt and of Wales, Finland, and Brazil.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 235
Author(s):  
Nicolò Maria Ippolito ◽  
Ionela Birloaga ◽  
Francesco Ferella ◽  
Marcello Centofanti ◽  
Francesco Vegliò

The present paper is focused on the extraction of gold from high-grade e-waste, i.e., spent electronic connectors and plates, by leaching and electrowinning. These connectors are usually made up of an alloy covered by a layer of gold; sometimes, in some of them, a plastic part is also present. The applied leaching system consisted of an acid solution of diluted sulfuric acid (0.2 mol/L) with thiourea (20 g/L) as a reagent and ferric sulfate (21.8 g/L) as an oxidant. This system was applied on three different high-grade e-waste, namely: (1) Connectors with the partial gold-plated surface (Au concentration—1139 mg/kg); (2) different types of connectors with some of which with completely gold-plated surface (Au concentration—590 mg/kg); and (3) connectors and plates with the completely gold-plated surface (Au concentration—7900 mg/kg). Gold dissolution yields of 52, 94, and 49% were achieved from the first, second, and third samples, respectively. About 95% of Au recovery was achieved after 1.5 h of electrowinning at a current efficiency of only 4.06% and current consumption of 3.02 kWh/kg of Au from the leach solution of the third sample.


Sign in / Sign up

Export Citation Format

Share Document