scholarly journals High Temperature Reduced Granulite-Facies Nature of Garnetites in the Khabarny Mafic–Ultramafic Massif, Southern Urals: Evidence from Fluid and Mineral Analyses

2020 ◽  
Vol 61 (6) ◽  
Author(s):  
Ronald J Bakker ◽  
Evgenii Pushkarev ◽  
Anna P Biryuzova

Abstract High-grade metamorphic rocks underlying the intrusive layered dunite–pyroxenite–gabbronorite East-Khabarny Complex (EKC) are integrated in the complex Khabarny mafic–ultramafic Massif in the Sakmara Allochthon zone in the Southern Urals. These rocks are associated with high-temperature shear zones. Garnetites from the upper part of the metamorphic unit close to the contact with EKC gabbronorite are chemically and texturally analysed to estimate their formation conditions and fluid regime. Fluids provide crucial information of formation conditions and evolution of these garnetites during high-grade metamorphism, and are preserved in channel positions within Si6O1812- rings of cordierite, and in fluid inclusions in quartz and garnet. Minerals and fluid inclusions of the garnetites are studied with X-ray fluorescence spectrometry, electron microprobe analyses, Raman spectroscopy, and microthermometry. The garnetites mainly consist of garnet (up to 80 vol. %), cordierite and quartz. Accessory minerals are rutile, ilmenite, graphite, magnetite and cristobalite. Granulite-facies metamorphic conditions of the garnetites are estimated with the garnet–cordierite–sillimanite–quartz geothermobarometer: temperatures of 740 to 830 ˚C and pressures of 770–845 MPa. The average garnet composition in end-member concentrations is 48·5 mole % almandine (±3·9), 34·7 mole % pyrope (±3·3), 10·3 mole % spessartine (±1·1), 1·8 mole % grossular (±1·5), and 1·5 mole % andradite (±1·5). The cordierite electron microprobe analyses reveal an average Mg2+ fraction of 0·79 ± 0·01 in the octahedral site. Relicts of a strong positive temperature anomaly (up to 1000 ˚C) are evidenced by the preservation of cristobalite crystals in garnet and the high titanium content of quartz (0·031 ± 0·008 mass % TiO2) and garnet (0·31 ± 0·16 mole % end-member Schorlomite-Al). The fluid components H2O, CO2, N2 and H2S are detected in cordierite, which correspond to a relatively oxidized fluid environment that is common in granulites. In contrast, a highly reduced fluid environment is preserved in fluid inclusions in quartz nodules, which are mono-fluid phase at room temperature and composed of CH4 (>96 mole %) with locally minor amounts of C2H6, N2, H2S and graphite. The fluid inclusions occur in homogeneous assemblages with a density of 0·349 to 0·367 g·cm-3. The CH4-rich fluid may represent peak-temperature metamorphic conditions, and is consistent with temperature estimation (∼1000 ˚C) from Ti-in-garnet and Ti-in-quartz geothermometry. Tiny CH4-rich fluid inclusions (diameter 0·5 to 2 µm) are also detected by careful optical analyses in garnet and at the surface of quartz crystals that are included in garnet grains. Graphite in fluid inclusions precipitated at retrograde metamorphic conditions around 300–310 ± 27 ˚C. Aragonite was trapped simultaneously with CH4-rich fluids and is assumed to have crystallized at metastable conditions. The initial granulite facies conditions that led to the formation of a cordierite and garnet mineral assemblage must have occurred in a relative oxidized environment (QFM-buffered) with H2O–CO2-rich fluids. Abundant intrusions or tectonic emplacement of mafic to ultramafic melts from the upper mantle that were internally buffered at a WI-buffered (wüstite–iron) level must have released abundant hot CH4-rich fluids that flooded and subsequently dominated the system. The origin of the granulite-facies conditions is similar to peak-metamorphic conditions in the Salda complex (Central Urals) and the Ivrea–Verbano zone (Italian Alps) as a result of magmatic underplating that provided an appearance of a positive thermal anomaly, and further joint emplacement (magmatic and metamorphic rocks together) into upper crustal level as a high temperature plastic body (diapir).

1992 ◽  
Vol 29 (10) ◽  
pp. 2309-2327 ◽  
Author(s):  
Robert P. Moritz ◽  
Serge R. Chevé

The high-grade metamorphic rocks of the Ashuanipi complex have been the subject of a microthermometric fluid-inclusion study. Four types of fluid inclusions were observed: CO2-rich fluids; low-temperature, high-salinity H2O fluids; CH4 ± N2-rich fluids; and high-temperature, low-salinity H2O fluids. The regionally distributed CO2-rich fluids are the earliest fluids, and their calculated isochores indicate a clockwise post-peak metamorphic P–T–t path for the Ashuanipi complex. The low-temperature, high-salinity aqueous fluid inclusions are also distributed regionally and can be interpreted as late brines, retrograde metamorphic fluids, or the wicked-off aqueous component of H2O–CO2 fluid inclusions. Both CH4 ± N2-rich fluids and the high-temperature, low-salinity aqueous fluid inclusions were found only locally in gold-bearing metamorphosed banded iron formations. Fluid-inclusion microthermometry, arsenopyrite thermometry, and metamorphic petrologic study at Lac Lilois, one of the principal gold showings, suggest that some gold deposition may have occurred during regional post-peak metamorphic exhumation and cooling at P–T conditions near the amphibolite–greenschist transition. However, it is possible that gold deposition began at higher near-peak metamorphic P–T conditions. Another major gold showing, Arsène, is characterized by CH4 ± N2-rich fluid inclusions, tentatively inferred to be either directly related to gold deposition or responsible for secondary gold enrichment. The association of CH4 ± N2-rich fluids with gold occurrences in the Ashuanipi complex is comparable to gold deposits of the Abitibi greenstone belt and of Wales, Finland, and Brazil.


1993 ◽  
Vol 5 (2) ◽  
pp. 193-206 ◽  
Author(s):  
P. D. Kinny ◽  
L. P. Black ◽  
J. W. Sheraton

The application of zircon U-Pb geochronology using the SHRIMP ion microprobe to the Precambrian high-grade metamorphic rocks of the Rauer Islands on the Prydz Bay coast of East Antarctica, has resulted in major revisions to the interpreted geological history. Large tracts of granitic orthogneisses, previously considered to be mostly Proterozoic in age, are shown here to be Archaean, with crystallization ages of 3270 Ma and 2800 Ma. These rocks and associated granulite-facies mafic rocks and paragneisses account for up to 50% of exposures in the Rauer Islands. Unlike the 2500 Ma rocks in the nearby Vestfold Hills which were cratonized soon after formation, the Rauer Islands rocks were reworked at about 1000 Ma under granulite to amphibolite facies conditions, and mixed with newly generated felsic crust. Dating of components of this felsic intrusive suite indicates that this Proterozoic reworking was accomplished in about 30–40 million years. Low-grade retrogression at 500 Ma was accompanied by brittle shearing, pegmatite injection, partial resetting of U-Pb geochronometers and growth of new zircons. Minor underformed lamprophyre dykes intruded Hop and nearby islands later in the Phanerozoic. Thus, the geology of the Rauer Islands reflects reworking and juxtaposition of unrelated rocks in a Proterozoic orogenic belt, and illustrates the important influence of relatively low-grade fluid-rock interaction on zircon U-Pb systematics in high-grade terranes.


2019 ◽  
Vol 114 (7) ◽  
pp. 1415-1442 ◽  
Author(s):  
Christophe Scheffer ◽  
Alexandre Tarantola ◽  
Olivier Vanderhaeghe ◽  
Panagiotis Voudouris ◽  
Paul G. Spry ◽  
...  

Abstract The formation of ore deposits in the Lavrion Pb-Zn-Ag district was associated with Miocene detachment that accommodated orogenic collapse and exhumation of high-grade nappes across the ductile-brittle transition. This district consists of (1) low-grade porphyry Mo style, (2) Cu-Fe skarn, (3) high-temperature carbonate replacement Pb-Zn-Ag, and (4) vein and breccia Pb-Zn-Ag mineralization. The vein and breccia mineralization locally contains high-grade silver in base metal sulfides that are cemented by fluorite and carbonate gangue. The rare earth element contents of these gangue minerals, chondrite-normalized patterns, and fluid inclusion studies suggest that they precipitated from a low-temperature hydrothermal fluid. Primary and pseudosecondary fluid inclusions in fluorite and calcite are characterized by a wide range of homogenization temperatures (92°–207°C) and salinities of up to 17.1 wt % NaCl equiv. Secondary fluid inclusions only represent <5 vol % of the total fluid trapped. Fluids extracted from inclusions in fluorite have values of δD = –82.1 to –47.7‰ (Vienna-standard mean ocean water [V-SMOW]) and δ18O = –10.4 to –5.1‰ (V-SMOW). These data and low ratios of Cl/Br measured by crush-leach analyses for fluids in fluorite (102–315) and calcite (162–188) are compatible with the ore fluid being the result of mixing of meteoric water with evaporated seawater. These data suggest that fluids leading to the deposition of late Pb-Zn-Ag–rich vein- and breccia-style mineralization in Lavrion were related to circulation of mixed evaporated seawater and meteoric fluids that was enhanced by brittle deformation. This contrasts with the fluids of magmatic origin related to the formation of low-grade porphyry Mo, Cu-Fe skarn, and high-temperature carbonate replacement deposits spatially related to the Plaka granodiorite.


2008 ◽  
Vol 16 (2) ◽  
pp. 26-31 ◽  
Author(s):  
Robert Sturm

Metamorphic rocks formed under conditions of high temperature (>600°C) and high lithological pressure (>1 GPa) and being subject to a subsequent tectonic uplift commonly include a remarkable number of fascinating mineral textures. One type of these well known and extensively described high-grade metamorphic textures are the so-called corona structures or reaction rims which, by definition, are primarily based on metamorphic reactions that cause the formation of concentric layers of new mineral phases separating an older and unstable mineral core from a newer and equally unstable mineral matrix. In other words, corona structures in metamorphic rocks preserve evidence of changes in the environmental conditions (temperature, pressure, fugacity of H2O) experienced by the rock during its tectonometamorphic history.


2001 ◽  
Vol 4 (4) ◽  
pp. 803
Author(s):  
Junji Torimoto ◽  
Hiroharu Matsueda ◽  
Sachihiro Taguchi ◽  
Takamura Tsuchiya

1994 ◽  
Vol 31 (7) ◽  
pp. 1096-1103 ◽  
Author(s):  
T. E. Krogh ◽  
D. E. Moser

A decade of U–Pb dating of zircon and monazite from high-grade metamorphic rocks in the Kapuskasing uplift has identified a series of magmatic and metamorphic events between 2700 and 2585 Ma, and indicates that the onset of regional granulite metamorphism took place at mid-crustal levels of the southern Superior craton ca. 2660 Ma. New U–Pb ages for zircon and monazite have been used to constrain the age of ductile deformation fabrics at two sites in the Ivanhoe Lake fault zone, the structure along which the granulite-facies Kapuskasing structural zone was uplifted. These results suggest that the fault zone was probably active in the late Archean (as young as 2630 Ma) and again at approximately 2500 Ma.


2014 ◽  
Vol 18 (1) ◽  
pp. 39-44 ◽  
Author(s):  
Qian Dong ◽  
Yangsong Du ◽  
Zhenshan Pang ◽  
Wenrui Miao ◽  
Wei Tu

<p>The Wushan skarn copper deposit is genetically associated with the Wushan granodiorite. In this study, we investigate the petrography and mineralogy of biotites within the Wushan granodiorite. We also determine the formation conditions of these biotites and discuss the significance of these minerals in terms of petrogenesis and mineralization. Electron microprobe analysis shows that biotites within the Wushan granodiorite are Magnesio-biotites that contain relatively high Mg and Ti concentrations and low Fe and Al concentrations. The ionic coefficient of Al<sup>VI</sup> in these biotites ranges from 0.03 to 0.19, with SFeO/(SFeO + MgO) ratios that range from 0.531–0.567 and MgO concentrations that range from 12.80–14.06 wt%. These results indicate that the Wushan granodiorite is an I-type granite. The Wushan biotites crystallized at temperatures (T) of 720°C–750°C, with oxygen fugacity (fO<sub>2</sub>) conditions of –11.6 to –12.5 and pressures (P) of 0.86–1.03 kb. These conditions are indicative of a crystallization depth (H) of 2.84–3.39 km. These data also indicate that the Wushan granodiorite developed under conditions of high temperature and high oxygen fugacity, suggesting that the Wushan granodiorite is prospective for magma-hydrothermal mineralization and that this granodiorite probably contributed to the formation of the Wushan skarn copper deposit.</p><p> </p><p><strong>Resumen</strong></p><p>El depósito de skarn cuprífero de Wushan está asociado genéticamente con la granodiorita de Wushan. En este estudio se investiga la petrografía y mineralogía de biotitas de la granodiorita de Wushan. Se determinan también las condiciones de formación de estas biotitas y se discute la significación de estos minerales en términos de petrogénesis y mineralización. Un análisis de microsonda a electrones muestra que las biotitas de la granodiorita de Wushan son biotitas de magnesio que contienen altas concentracionesrelativas de Mg y Ti y bajas de Fe y Al. El coeficiente icónico de AlVI en estas biotitas oscila entre 0,03 y 0,19, con índices SFeO/(SFeO + MgO) que oscilan entre 0,531-0,567 y concentraciones de MgO que van desde 12,80 a 14,06 wt%. Estos resultados indican que la granodiorita de Wushan es de granito tipo I. Las biotitas de Wushan se cristalizaron a temperaturas (T) de 720°C–750°C, con condiciones de fugacidad del oxígeno (fO2) de -11,6 a -12,5 y presión (P) de O,86 a 1,03 kb. Estas condiciones indican una profundidad de cristalización (H) de 2,84-3,39 kilómetros. Los datos también indican que la granodiorita de Wushan se desarrolló bajo condiciones de alta temperatura y alta fugacidad de oxigeno, lo que sugiere que la granodiorita de Wushan tiene potencial para la mineralización magmática-hidrotérmica y que esta granodiorita probablemente contribuyó a la formación del depósito de skarn cuprífero de Wushan.</p>


1992 ◽  
Vol 29 (4) ◽  
pp. 737-745 ◽  
Author(s):  
Jacques Martignole

High-grade (granulite-facies) terranes are brought to the surface by a combination of uplift and erosion (exhumation). The reported mechanisms and durations of exhumation are variable and depend partly on the mode of formation of a given high-grade terrane. In this paper, we consider the case of granulite-facies conditions that are attained (i) in juvenile crust, in the roots of magmatic arcs (e.g., Kohistan, Fiordland), (ii) around deep-seated high-temperature plutonic complexes, and (iii) in the lower parts of thickened continental crust. In the case of the roots of magmatic arcs, Phanerozoic examples suggest that they are exhumed along shallow-dipping contraction faults or shear zones that developed during continental obduction in a convergent tectonic regime. This process is not fundamentally different from processes leading to the exhumation of high-pressure (blueschist, eclogite) terranes. In contrast, deep-seated high-temperature plutonic complexes are thermostructural domes, analogous to the lower levels of core complexes, which may also have contributed to the uprise of high-grade terranes. Such domes should be sought for around anorthositic or mafic plutons, where their ascent may also have been favoured by continental extension. These modes of exhumation are compatible with a monocyclic evolution. However, many high-grade terranes show evidence of a polycyclic evolution and, in such cases, the nature of the thermal perturbation responsible for granulite-facies metamorphism is still debated. Thermal modelling based on heat conduction in collision orogens shows that granulites cannot form at mid-cristal levels, namely those exposed after isostatically driven denudation. Thus, magmatic underplating and crustal extension have been suggested as causes of steepened geotherms. Underplating (or intraplating) supplies the heat and thickens the crust from below. Postcollisional extension has also been considered as a mechanism providing a heat pulse emanating from the asthenosphere, probably after the "detachment" of a relatively cold thermal boundary layer. Finally, isolated crustal-scale intracratonic thrusting may favour the rise of intermediate to lower crustal wedges (e.g., the Kapuskasing wedge, uplifted prior to the trans-Hudson collision).


Sign in / Sign up

Export Citation Format

Share Document