Fatigue failure of a hollow power transmission shaft

2002 ◽  
Vol 9 (4) ◽  
pp. 457-467 ◽  
Author(s):  
S.K. Bhaumik ◽  
R. Rangaraju ◽  
M.A. Parameswara ◽  
M.A. Venkataswamy ◽  
T.A. Bhaskaran ◽  
...  
1981 ◽  
Vol 103 (1) ◽  
pp. 101-107 ◽  
Author(s):  
M. S. Darlow ◽  
A. J. Smalley ◽  
A. G. Parkinson

A flexible rotor balancing procedure, which incorporates the advantages and eliminates the disadvantages of the modal and influence coefficient procedures, has been developed and implemented. This new procedure, referred to as the Unified Balancing Approach, has been demonstrated on a supercritical power transmission shaft test rig. The test rig was successfully balanced through four flexural critical speeds with a substantial reduction in effort as compared with the effort required in modal and influence coefficient balancing procedures. A brief discussion of the Unified Balancing Approach and its relationship to the modal and influence coefficient methods is presented. A series of tests which were performed to evaluate the effectiveness of various balancing techniques are described. The results of the Unified Balancing Approach tests are presented and discussed. These results confirm the superiority of this balancing procedure for the supercritical shaft test rig in particular and for multiple-mode balancing in general.


2015 ◽  
Vol 19 (2) ◽  
pp. 21
Author(s):  
Sebastian Diaz Millan ◽  
Yesid Aguilar Castro ◽  
Gonzalo Fernando Casanova García

Wear on sugar cane rolls is an expensive maintenance problem for the sugar cane industry. Wear produces loss of sucrose extraction and loss of grip of the roll on the bagasse. This paper presents the evaluation of wear and loss of grip of hypoeutectic and hypereutectic high chromium welding deposits applied on ASTM A-36 steel and gray cast iron. A modified ASTM G-65 standard test was used. Wear was produced by the abrasive action of wet bagasse with three levels of mineral extraneous matter. Silica grains with sizes in the range of 0.212-0.300 mm (AFS 50/70) were used as mineral extraneous matter. Grip was evaluated by measuring the torque on the power transmission shaft that moves the specimens. Worn surfaces were characterized by using scanning electron microscopy. Wear was found to increase proportionally related to the mineral extraneous matter content. Geometric changes of the weld deposits related to wear caused grip loss. For low mineral extraneous matter level, wear resistance of carbon steel was greater than that of gray cast iron; whereas the opposite was found for high mineral extraneous matter level.


Author(s):  
E. S. Zorzi ◽  
G. Burgess ◽  
R. Cunningham

This paper describes the design and testing of an elastomer damper on a super-critical power transmission shaft. The elastomers were designed to provide acceptable operation through the fourth bending mode and to control synchronous as well as nonsynchronous vibration throughout the operating range. The design of the elastomer was such that it could be incorporated into the system as a replacement for a squeeze-film damper without a reassembly, which could have altered the imbalance of the shaft. This provided a direct comparison of the elastomer and squeeze-film dampers without having to assess the effect of shaft imbalance changes.


2015 ◽  
Vol 9 (1) ◽  
pp. 271-281 ◽  
Author(s):  
S. Baragetti

The reliability of any mechanical system, in which the linear displacement of a piston is converted into the rotation of a power transmission shaft, strongly depends on the reliability of the crankshaft. The crankshaft is the critical component and any damage occurring to the crankshaft may put the mechanical system out of order. The numerical finite element simulation of crankshafts with multiple rods is often time consuming even if quite accurate if the aim is to evaluate the stress-strain behavior at the notched area and verify the component. The development of a simplified numerical model would prove effective to reduce the time needed to reach a good approximation design of the crankshaft. The aim of this paper is to give the designer a numerical procedure that allows to determine the strain and stress state and verify crankshafts having two or more rods.


1980 ◽  
Author(s):  
E. S. Zorzi ◽  
D. Flemming

Evaluation of power transmission shafting for high-speed balancing has shown that when axial torque is applied, the imbalance response is altered. An increase in synchronous excitation always occurs if the axial torque level is altered from the value used during balancing; this was the case even when the shaft was balanced with torque applied. The twisting of the long slender shaft produces a change in the imbalance distribution sufficient to disrupt the balanced state. This paper presents a review of the analytic development of a weighted least squares approach to influence coefficient balancing and a review of experimental results. The analytic approach takes advantage of the fact that the past testing has shown that the influence coefficients are not significantly affected by the application of axial torque. The 3.60-m (12-ft) long aluminum shaft, 7.62 cm (3 in.) in diameter was run through the first flexural critical speed at torque levels ranging from zero-torque to 903.8 N-M (8000 lb-in.) in 112.9 N-M (1000 lb-in.) increments. Good comparison was achieved between predicted and experimental results.


Sign in / Sign up

Export Citation Format

Share Document