The role of agouti-related protein in regulating body weight

1999 ◽  
Vol 5 (6) ◽  
pp. 250-256 ◽  
Author(s):  
Brent D. Wilson ◽  
Michael M. Ollmann ◽  
Gregory S. Barsh
Diabetologia ◽  
2004 ◽  
Vol 48 (1) ◽  
pp. 140-148 ◽  
Author(s):  
M. L�pez ◽  
L. M. Seoane ◽  
S. Tovar ◽  
M. C. Garc�a ◽  
R. Nogueiras ◽  
...  

2002 ◽  
Vol 22 (14) ◽  
pp. 5027-5035 ◽  
Author(s):  
Su Qian ◽  
Howard Chen ◽  
Drew Weingarth ◽  
Myrna E. Trumbauer ◽  
Dawn E. Novi ◽  
...  

ABSTRACT Agouti-related protein (AgRP), a neuropeptide abundantly expressed in the arcuate nucleus of the hypothalamus, potently stimulates feeding and body weight gain in rodents. AgRP is believed to exert its effects through the blockade of signaling by α-melanocyte-stimulating hormone at central nervous system (CNS) melanocortin-3 receptor (Mc3r) and Mc4r. We generated AgRP-deficient (Agrp−/− ) mice to examine the physiological role of AgRP. Agrp−/− mice are viable and exhibit normal locomotor activity, growth rates, body composition, and food intake. Additionally, Agrp−/− mice display normal responses to starvation, diet-induced obesity, and the administration of exogenous leptin or neuropeptide Y (NPY). In situ hybridization failed to detect altered CNS expression levels for proopiomelanocortin, Mc3r, Mc4r, or NPY mRNAs in Agrp−/− mice. As AgRP and the orexigenic peptide NPY are coexpressed in neurons of the arcuate nucleus, we generated AgRP and NPY double-knockout (Agrp−/− ;Npy−/− ) mice to determine whether NPY or AgRP plays a compensatory role in Agrp−/− or NPY-deficient (Npy−/− ) mice, respectively. Similarly to mice deficient in either AgRP or NPY, Agrp−/− ;Npy−/− mice suffer no obvious feeding or body weight deficits and maintain a normal response to starvation. Our results demonstrate that neither AgRP nor NPY is a critically required orexigenic factor, suggesting that other pathways capable of regulating energy homeostasis can compensate for the loss of both AgRP and NPY.


2015 ◽  
Vol 65 (1) ◽  
pp. 45-56 ◽  
Author(s):  
Lin Zhang ◽  
Fang Yang ◽  
Jinhong Cai ◽  
Chunmei Huang ◽  
Zhengkun Wang ◽  
...  

The hypothalamus and leptin play a key role in the regulation of food intake. The present study investigated the effects of 4 weeks of short- or long-photoperiod on serum leptin levels and food intake in relation to mRNA expression levels of neuropeptide Y, agouti-related protein, pro-opiomelanocortin, and cocaine- and amphetamine-regulated transcript in the hypothalamus of Chevrier’s field mouse (Apodemus chevrieri). There was a significant difference in body fat mass, food intake and neuropeptide Y mRNA expression between the two groups, but serum leptin level, agouti-related protein, pro-opiomelanocortin, and cocaine- and amphetamine-regulated transcript mRNA expression in the hypothalamus were not difference between the two groups. The elevation of neuropeptide Y mRNA regulated neuropeptides in the hypothalamus suggests a physiological role of neuroendocrine factors in food intake during the different photoperiod. We conclude that leptin may be involved in energy balance and body mass regulation.


2007 ◽  
Vol 293 (1) ◽  
pp. E252-E258 ◽  
Author(s):  
Gang Li ◽  
Yi Zhang ◽  
Enda Rodrigues ◽  
DongHang Zheng ◽  
Michael Matheny ◽  
...  

To examine the role of the brain stem melanocortin system in long-term energy regulation, we assessed the effects of overproduction of proopiomelanocortin (POMC) in the caudal brain stem of F344xBN rats with adult-onset obesity. Recombinant adeno-associated viral vector encoding POMC gene was delivered to the nucleus of solitary tract (NTS) in the hindbrain, and food intake, body weight, glucose and fat metabolism, brown adipose tissue thermogenesis, and mRNA levels of neuropeptides and melanocortin receptors were assessed. POMC delivery resulted in sustained reduction in food intake and body weight over 42 days and improved insulin sensitivity. At death, in recombinant adeno-associated viral vector-POMC-treated rats vs. control rats, α-melanocyte-stimulating hormone in NTS increased nearly 21-fold, whereas hypothalamic α-melanocyte-stimulating hormone remained unchanged. Visceral adiposity decreased by 37%; tissue triglyeride content diminished by 26% and 47% in liver and muscle, respectively; serum triglyeride and nonesterified fatty acids were reduced by 35% and 34%, respectively; phosphorylation of acetyl-CoA carboxylase was elevated by 63% in soleus muscle; brown adipose tissue uncoupling protein 1 increased by 30%; and melanocortin 3 receptor expression declined by 60%, whereas neuropeptide Y, agouti-related protein, and MC4 receptor mRNA levels were unchanged in the NTS. In conclusion, POMC overexpression in the NTS produces a characteristic unabated hypophagia that is uniquely different from the anorexic tachyphylaxis following POMC overexpression in the hypothalamus. The sustained anorectic response may result from absence of compensatory elements in the NTS, such as increased agouti-related protein expression, suggesting melanocortin activation of the brain stem may be a viable strategy to alleviate obesity.


Diabetes ◽  
2001 ◽  
Vol 50 (11) ◽  
pp. 2438-2443 ◽  
Author(s):  
J. Kamegai ◽  
H. Tamura ◽  
T. Shimizu ◽  
S. Ishii ◽  
H. Sugihara ◽  
...  

Endocrinology ◽  
2002 ◽  
Vol 143 (2) ◽  
pp. 558-568 ◽  
Author(s):  
Matthias Tschöp ◽  
Michael A. Statnick ◽  
Todd M. Suter ◽  
Mark L. Heiman

2001 ◽  
Vol 15 (1) ◽  
pp. 164-171 ◽  
Author(s):  
Wouter A. J. Nijenhuis ◽  
Julia Oosterom ◽  
Roger A. H. Adan

Abstract The central melanocortin (MC) system has been demonstrated to act downstream of leptin in the regulation of body weight. The system comprises α-MSH, which acts as agonist, and agouti-related protein (AgRP), which acts as antagonist at the MC3 and MC4 receptors (MC3R and MC4R). This property suggests that MCR activity is tightly regulated and that opposing signals are integrated at the receptor level. We here propose another level of regulation within the melanocortin system by showing that the human (h) MC4R displays constitutive activity in vitro as assayed by adenylyl cyclase (AC) activity. Furthermore, human AgRP(83–132) acts as an inverse agonist for the hMC4R since it was able to suppress constitutive activity of the hMC4R both in intact B16/G4F melanoma cells and membrane preparations. The effect of AgRP(83–132) on the hMC4R was blocked by the MC4R ligand SHU9119. Also the hMC3R and the mouse(m)MC5R were shown to be constitutively active. AgRP(83–132) acted as an inverse agonist on the hMC3R but not on the mMC5R. Thus, AgRP is able to regulate MCR activity independently of α-MSH. These findings form a basis to further investigate the relevance of constitutive activity of the MC4R and of inverse agonism of AgRP for the regulation of body weight.


Sign in / Sign up

Export Citation Format

Share Document