5635768 Gas turbine engine driven auxillary electric power unit with turbine speed controlled in response to generator output current

1997 ◽  
Vol 17 (12) ◽  
pp. XVIII
2020 ◽  
pp. 5-13
Author(s):  
Grigory Popov ◽  
◽  
Vasily Zubanov ◽  
Valeriy Matveev ◽  
Oleg Baturin ◽  
...  

The presented work provides a detailed description of the method developed by the authors for coordinating the working process of the main elements of the starting system for a modern gas turbine engine for a civil aviation aircraft: an auxiliary power unit (APU) and an air turbine – starter. This technique was developed in the course of solving the practical problem of selecting the existing APU and air turbine for a newly created engine. The need to develop this method is due to the lack of recommendations on the coordination of the elements of the starting system in the available literature. The method is based on combining the characteristics of the APU and the turbine, reduced to a single coordinate system. The intersection of the characteristic’s lines corresponding to the same conditions indicates the possibility of joint operation of the specified elements. The lack of intersection indicates the impossibility of joint functioning. The calculation also takes into account losses in the air supply lines to the turbine. The use of the developed method makes it possible to assess the possibility of joint operation of the APU and the air turbine in any operating mode. In addition to checking the possibility of functioning, as a result of the calculation, specific parameters of the working process at the operating point are determined, which are then used as initial data in calculating the elements of the starting system, for example, determining the parameters of the turbine, which in turn allow providing initial information for calculating the starting time or the possibility of functioning of the starting system GTE according to strength and other criteria. The algorithm for calculating the start-up time of the gas turbine engine was also developed by the authors and implemented in the form of an original computer program. Keywords: gas turbine engine start-up, GTE starting system, air turbine, methodology, joint work, auxiliary power unit, power, start-up time, characteristics matching, coordination, operational characteristics, computer program.


Author(s):  
D. S. Kalabuhov ◽  
V. A. Grigoriev ◽  
A. O. Zagrebelnyi ◽  
D. S. Diligensky

Abstract The article describes the adjusted parametrical turboshaft gas turbine engine mass model that is applied for the helicopter engine operating cycle parameters optimization during a conceptual engineering. During the operation of the take-off mass, which indirectly characterizes the cost of materials for the entire designed aircraft system, one of the main components which determines the coordination of the helicopter and its engine parameters is a mass of the gas turbine power unit. Moreover, during the parametrical studies the designed mass of a power unit should be defined by the parameters of a gas turbine engine; however, this type of dependencies is not that well enough studied for today. Therefore the evaluation of the dependency between the engine mass and its operational parameters is performed by using either generalized statistical data for existing designs or by parametrical mass models since there is nothing more precise up to date. However as new types of gas turbine engines appear it is required to update the values of parametrical model coefficients. This article describes the influence of different cooling system units on the engine mass and also clarifies the coefficients that specify the engine mass advance by introducing the structural-technological measures. The last one is highly dependent on the designed gas turbine engine (GTE) serial production year. It also has been proposed to represent some coefficients that are used in the model as dependencies of the main operational parameters. This has allowed to perform the parametrical study and to gain predictive solutions in correspondence to the modern engine design level.


Author(s):  
S. T. Robinson ◽  
J. W. Glessner

The means of using total energy from a gas-turbine engine in various refrigeration systems are reviewed. Combinations of heating and cooling or electric power generation and cooling are discussed as well as combined centrifugal and absorption refrigeration systems. The economics of gas-burning turbine engines are investigated and shown to be attractive in these applications.


2017 ◽  
Vol 7 (5) ◽  
pp. 2005-2009
Author(s):  
R. M. Catana ◽  
G. Cican ◽  
G. Dediu

The paper presents the examination of two different types of engine starting configurations, applicated on TV2-117A turboshaft, running into the test bench. The first type of starting configuration is a normal starting, with the engine connected to the dynamometer which controls the free turbine speed by the dynamometer load. The second type of starting is a different one, the engine is not connected with the dynamometer, therefore it results that there is no control of the free turbine speed from the dynamometer, only from the engine but in particular conditions. To achieve the starting phase an instrumentation scheme is created, to control and monitor the engine, and a starting sequence with all the parameters, confirmations and commands that are involved into the starting phase. The engine starting is performed by the test bench operating system, composed of an acquisition system and a programmable controller, wherewith is running the starting sequence.


Author(s):  
Grigorii Popov ◽  
Vasilii Zubanov ◽  
Oleg Baturin ◽  
Daria Kolmakova ◽  
Yulia Novikova ◽  
...  

Abstract The authors of the paper have developed and successfully tested a method for optimizing the air starter of a gas turbine engine, considering its joint operation with the auxiliary power unit. As a result, a way to increase the efficiency of the existing launch system during the modernization of the gas turbine engine was found. Hereinafter, start efficiency is a reduction in engine start-up time and possibility of the engine start under all operating conditions. When designing and modernizing a gas turbine engine, the greatest attention is usually paid to its main components: compressor, combustion chamber, turbine, etc. Huge efforts are spent to improve the parameters of these components, as evidenced by the huge number of publications. However, there are several “secondary” elements in the gas turbine engine. One of them is the launch system with the turbo starter, which is a small turbine driven by compressed air from the auxiliary power unit (APU). It is used to spin the engine rotor at the startup. Even though this element is small compared to the engine and it works only for a short time, the operation of a gas turbine engine is impossible without it. This system must start the engine in a short time (for military aircraft in a very short time) at any operating conditions. The presented work appeared while verifying the possibility of using existing turbo starter for a modernized engine using modern APU fulfilling all existing operational limitations. To solve this problem, a methodology was developed for determining the possibility of joint operation of the starter turbine and the APU, and for the calculation of the parameters of the air system there. The essence of the methodology is that a characteristic of the form “flow parameter is the function of the pressure drop across the turbine” is determined for an air turbine of a turbo starter based on CFD modeling in the NUMECA program. The calculated characteristic of the turbine was obtained considering the correction factors found during verification. The calculated characteristics is in a good agreement with the experimental data. The obtained characteristic was combined with the characteristic of the APU using the same coordinates for different flight conditions. The intersection points of the characteristics of the turbine and the APU corresponded to the operating points of the launch system. Non-intersection of the characteristics of the APU and the turbine signals the impossibility of the launch system operation at this mode. At the found operating points, the main parameters of the launch system were determined using CFD modeling. In particular, the torque values on the output shaft were checked. If it exceeded the limit value under the conditions of structural strength, work in this mode was considered as impossible. The torque value was also used to calculate the engine start time. Based on the developed methodology for determining the possibility of joint operation of the launch system, an optimization algorithm for the turbo starter turbine was developed and implemented. Based on the developed tools, the possibility of using existing turbo starters to launch the modernized engine was analyzed. It was found that the considered variants for air turbo starters do not meet the requirements: the first variant has a long start time, and the second one provides torque above the permissible. Using the developed algorithms, the shape of the second air turbo starter blades was optimized, which provides the modernized variant for that the permissible value of the torque on the shaft is provided with minimal changes in the design and with an acceptable start time at all operating modes.


Author(s):  
Jeffrey S. Patterson

The LSD-41 Whidbey Island Class of Amphibious dock landing ships are powered by two Colt-Pielstick PC2.5V Block 16 cylinder Main Propulsion Diesel engines. These engines represent the largest diesels in the U.S. Navy. Currently, they are started without the use of a mechanical starter, by injecting 100 cfm [47.2 LPs] of 3,000 psig [206.9 barr] high pressure air, reduced to 425 psig [29.3 barr] directly into one block of eight engine cylinders. Naval Surface Warfare Center, Carderock Division (NSWCCD) was tasked to perform a proof of concept test that would demonstrate the capability of an Auxiliary Power Unit (APU) gas turbine engine to start these large, medium speed diesel engines. This paper will present the background, installation and initial testing for this proof of concept test. The background section will discuss the test philosophy, the LSD-41 Land Based Engineering Site (LBES) and initial prototype testing. The installation section will discuss the modifications made to the LBES for this test and the characteristics and specifications of the test hardware. The testing section will discuss the test plan and the test procedures. This paper will not present any results or data analysis from this proof of concept test. Test site availability and equipment procurement delays postponed the start of this test until March, 1996. Therefore, the test results will be discussed at the upcoming Turbo Exposition conference.


Sign in / Sign up

Export Citation Format

Share Document