493 Gene expression profiles in resveratrol-induced cell death in acute promyelocytic leukemia cells

2010 ◽  
Vol 8 (5) ◽  
pp. 126
Author(s):  
Z. Cakir ◽  
G. Can ◽  
G. Saydam ◽  
F. Sahin ◽  
Y. Baran
2004 ◽  
Vol 24 (24) ◽  
pp. 10882-10893 ◽  
Author(s):  
Matthew J. Walter ◽  
John S. Park ◽  
Steven K. M. Lau ◽  
Xia Li ◽  
Andrew A. Lane ◽  
...  

ABSTRACT Leukemia results from the expansion of self-renewing hematopoietic cells that are thought to contain mutations that contribute to disease initiation and progression. Studies of the gene expression profiles of human acute myeloid leukemia samples has allowed their classification based on the presence of translocations and French-American-British subtypes, but it is not yet clear whether their molecular signatures reflect the initiating mutations or mutations acquired during progression. To begin to address this question, we examined the expression profiles of normal murine promyelocyte-enriched samples, nontransformed murine promyelocytes expressing human promyelocytic leukemia-retinoic acid receptor alpha (PML-RARα) fusion gene, and primary acute promyelocytic leukemia cells. The expression profile of nontransformed cells expressing PML-RARα was remarkably similar to that of wild-type promyelocytes. In contrast, the expression profiles of fully transformed cells from three acute promyelocytic leukemia model systems were all different, suggesting that the expression signature of acute promyelocytic leukemia cells reflects the genetic changes that contributed to progression. To further evaluate these progression events, we compared two high-penetrance acute promyelocytic leukemia models that both commonly acquire an interstitial deletion of chromosome 2 during progression. The two models exhibited distinct gene expression profiles, suggesting that the dominant molecular signatures of murine acute promyelocytic leukemia can be influenced by several independent progression events.


Blood ◽  
2000 ◽  
Vol 96 (4) ◽  
pp. 1496-1504 ◽  
Author(s):  
Ting-Xi Liu ◽  
Ji-Wang Zhang ◽  
Jiong Tao ◽  
Ruo-Bo Zhang ◽  
Qing-Hua Zhang ◽  
...  

Abstract To elucidate the molecular mechanism of all-trans-retinoic acid (ATRA)–induced differentiation of acute promyelocytic leukemia (APL) cells, the gene expression patterns in the APL cell line NB4 before and after ATRA treatment were analyzed using complementary DNA array, suppression-subtractive hybridization, and differential-display–polymerase chain reaction. A total of 169 genes, including 8 novel ones, were modulated by ATRA. The ATRA-induced gene expression profiles were in high accord with the differentiation and proliferation status of the NB4 cells. The time courses of their modulation were interesting. Among the 100 up-regulated genes, the induction of expression occurred most frequently 12-48 hours after ATRA treatment, while 59 of 69 down-regulated genes found their expression suppressed within 8 hours. The transcriptional regulation of 8 induced and 24 repressed genes was not blocked by cycloheximide, which suggests that these genes may be direct targets of the ATRA signaling pathway. A balanced functional network seemed to emerge, and it formed the foundation of decreased cellular proliferation, maintenance of cell viability, increased protein modulation, and promotion of granulocytic maturation. Several cytosolic signaling pathways, including JAKs/STAT and MAPK, may also be implicated in the symphony of differentiation.


Blood ◽  
2000 ◽  
Vol 96 (4) ◽  
pp. 1496-1504 ◽  
Author(s):  
Ting-Xi Liu ◽  
Ji-Wang Zhang ◽  
Jiong Tao ◽  
Ruo-Bo Zhang ◽  
Qing-Hua Zhang ◽  
...  

To elucidate the molecular mechanism of all-trans-retinoic acid (ATRA)–induced differentiation of acute promyelocytic leukemia (APL) cells, the gene expression patterns in the APL cell line NB4 before and after ATRA treatment were analyzed using complementary DNA array, suppression-subtractive hybridization, and differential-display–polymerase chain reaction. A total of 169 genes, including 8 novel ones, were modulated by ATRA. The ATRA-induced gene expression profiles were in high accord with the differentiation and proliferation status of the NB4 cells. The time courses of their modulation were interesting. Among the 100 up-regulated genes, the induction of expression occurred most frequently 12-48 hours after ATRA treatment, while 59 of 69 down-regulated genes found their expression suppressed within 8 hours. The transcriptional regulation of 8 induced and 24 repressed genes was not blocked by cycloheximide, which suggests that these genes may be direct targets of the ATRA signaling pathway. A balanced functional network seemed to emerge, and it formed the foundation of decreased cellular proliferation, maintenance of cell viability, increased protein modulation, and promotion of granulocytic maturation. Several cytosolic signaling pathways, including JAKs/STAT and MAPK, may also be implicated in the symphony of differentiation.


2002 ◽  
Vol 277 (51) ◽  
pp. 49504-49510 ◽  
Author(s):  
Ji Li ◽  
Peili Chen ◽  
Natasha Sinogeeva ◽  
Myriam Gorospe ◽  
Robert P. Wersto ◽  
...  

Arsenic trioxide (As2O3) is highly effective for the treatment of acute promyelocytic leukemia, even in patients who are unresponsive to all-trans-retinoic acid therapy. As2O3is believed to function primarily by promoting apoptosis, but the underlying molecular mechanisms remain largely unknown. In this report, using cDNA arrays, we have examined the changes in gene expression profiles triggered by clinically achievable doses of As2O3in acute promyelocytic leukemia NB4 cells.CASPASE-10expression was found to be potently induced by As2O3. Accordingly, caspase-10 activity also substantially increased in response to As2O3treatment. A selective inhibitor of caspase-10, Z-AEVD-FMK, effectively blocked caspase-3 activation and significantly attenuated As2O3-triggered apoptosis. Interestingly, the treatment of NB4 cells with As2O3markedly increased histone H3 phosphorylation at serine 10, an event that is associated with acetylation of the lysine 14 residue. Chromatin immunoprecipitation assays revealed that As2O3potently enhances histone H3 phosphoacetylation at theCASPASE-10locus. These results suggest that the effect of As2O3on histone H3 phosphoacetylation at theCASPASE-10gene may play an important role in the induction of apoptosis and thus contribute to its therapeutic effects on acute promyelocytic leukemia.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 560-560 ◽  
Author(s):  
Ma. Reina Improgo ◽  
Adam Kiezun ◽  
Yaoyu Wang ◽  
Lillian Werner ◽  
Petar Stojanov ◽  
...  

Abstract Abstract 560 Nuclear factor kappa B (NF-κB) encompasses a family of transcription factors involved in oncogenic processes including cellular proliferation and apoptotic inhibition. Constitutive activation of NF-κB has been observed in hematologic malignancies and is thought to confer resistance to chemotherapeutic agents. Here, we examine the role of the NF-κB pathway in chronic lymphocytic leukemia (CLL). Whole-exome sequencing was performed using tumor and matched germline DNA from 167 CLL patients. We identified 51 patients (30%) carrying 53 non-silent somatic variants in genes of the canonical NF-κB pathway, which consists of 272 genes as defined by the Ingenuity Pathway Analysis tool. Of the 99 patients whose germline sequences have been analyzed to date, 27 patients (27%) carry 34 non-silent germline variants in NF-κB pathway genes. A total of 67 patients (40%) have at least one non-silent somatic or germline variant. Variants in the NFKB1 gene, itself, were also observed: a somatic variant, H66R, found in two patients, and two germline variants, Y89F and R849W, each found in one patient. To evaluate the functional consequences of the NFKB1 variants, we performed site-directed mutagenesis to generate full-length NFKB1 cDNAs encoding these variants. We subsequently measured transcriptional activity of wild-type and mutant NFKB1 via luciferase assays in HEK293T cells using reporter cassettes containing the NFKB1 response element. Transcriptional activity of the three NFKB1 variants was found to be at least 2-fold higher than that of wild-type NFKB1 (p<0.0001). We further hypothesized that this increased transcriptional activity would lead to increased expression of NFKB1 downstream target genes. Analysis of gene expression profiles from Affymetrix HG-U133 Plus 2.0 Arrays of 65 CLL patient samples showed that the NFKB1 downstream targets CCL3, CCL4, and CD69 are upregulated in NFKB1 variants. To validate these results, we performed quantitative RT-PCR in patients with (n=3) or without (n=9) NFKB1 variants and confirmed upregulation of CCL3 (p=0.0286), CCL4 (p=0.0384), and CD69 (p=0.0263). Direct transfection of HEK293T cells with NFKB1 variants also resulted in a 3.3-fold upregulation of CCL3 (p=0.05). To test the hypothesis that deregulation of the NF-κB pathway is a key mechanism in CLL, we compared gene expression profiles of NF-κB pathway genes between CLL patient samples (n=146) and normal B cells (n=16) and found overall upregulation of the NF-κB pathway in CLL (Kolmogorov-Smirnov test, p=2.2e-16). K-means clustering and principal component analysis (PCA) further revealed that CLL patients can be divided into two subgroups exhibiting differential magnitude of NF-κB pathway upregulation. Studies in progress aim to identify the clinical significance of these subgroups. Finally, we assessed the effect of inhibiting the NF-κB pathway using the cell permeant NF-κB inhibitor, SN50. We performed Annexin V/PI staining 24 hours post-treatment in CLL cells with (n=9) or without (n=3) NF-κB pathway variants. SN50 increased cell death 1.8-fold in all cells tested (p<0.0001). Quantitative RT-PCR also showed a 59% decrease in expression of CCL3 one hour post-treatment, confirming inhibition of the NF-κB pathway. In conclusion, our findings demonstrate that a high proportion of CLL patients harbor somatic and germline variants in NF-κB pathway genes, some of which appear to be functional. Furthermore, the NF-κB pathway is upregulated in CLL and pharmacological inhibition of the pathway leads to increased cancer cell death. Functional characterization of NF-κB pathway variants offers mechanistic insight into the disease, providing novel targets for therapy. Disclosures: No relevant conflicts of interest to declare.


2011 ◽  
Vol 24 (7) ◽  
pp. 773-786 ◽  
Author(s):  
Hye-Sook Kim ◽  
Phanit Thammarat ◽  
Steven A. Lommel ◽  
Clifford S. Hogan ◽  
Amy O. Charkowski

The broad-host-range bacterial soft rot pathogen Pectobacterium carotovorum causes a DspE/F-dependent plant cell death on Nicotiana benthamiana within 24 h postinoculation (hpi) followed by leaf maceration within 48 hpi. P. carotovorum strains with mutations in type III secretion system (T3SS) regulatory and structural genes, including the dspE/F operon, did not cause hypersensitive response (HR)-like cell death and or leaf maceration. A strain with a mutation in the type II secretion system caused HR-like plant cell death but no maceration. P. carotovorum was unable to impede callose deposition in N. benthamiana leaves, suggesting that P. carotovorum does not suppress this basal immunity function. Within 24 hpi, there was callose deposition along leaf veins and examination showed that the pathogen cells were localized along the veins. To further examine HR-like plant cell death induced by P. carotovorum, gene expression profiles in N. benthamiana leaves inoculated with wild-type and mutant P. carotovorum and Pseudomonas syringae strains were compared. The N. benthamiana gene expression profile of leaves infiltrated with Pectobacterium carotovorum was similar to leaves infiltrated with a Pseudomonas syringae T3SS mutant. These data support a model where Pectobacterium carotovorum uses the T3SS to induce plant cell death in order to promote leaf maceration rather than to suppress plant immunity.


Sign in / Sign up

Export Citation Format

Share Document