Aryl hydrocarbon receptor-mediated activity of mutagenic polycyclic aromatic hydrocarbons determined using in vitro reporter gene assay

Author(s):  
Miroslav Machala ◽  
Jan Vondráček ◽  
Luděk Bláha ◽  
Miroslav Ciganek ◽  
Jiřı́ Neča
2003 ◽  
Vol 26 (4) ◽  
pp. 532-539 ◽  
Author(s):  
Yoshiaki Amakura ◽  
Tomoaki Tsutsumi ◽  
Masafumi Nakamura ◽  
Hiroko Kitagawa ◽  
Junko Fujino ◽  
...  

2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Alberto Celma ◽  
Geeta Mandava ◽  
Agneta Oskarsson ◽  
Juan Vicente Sancho ◽  
Lubertus Bijlsma ◽  
...  

Abstract Background Fresh water bodies represent less than 1% of overall amount of water on earth and ensuring their quality and sustainability is pivotal. Although several campaigns have been performed to monitor the occurrence of micropollutants by means of chemical analysis, this might not cover the whole set of chemicals present in the sample nor the potential toxic effects of mixtures of natural and anthropogenic chemicals. In this sense, by selecting relevant toxicity endpoints when performing in vitro bioanalysis, effect-based methodologies can be of help to perform a comprehensive assessment of water quality and reveal biological activities relevant to adverse health effects. However, no prior bioanalytical study was performed in wetland water samples from the Spanish Mediterranean coastline. Methods Eleven samples from relevant water bodies from the Spanish Mediterranean coastline were collected to monitor water quality on 8 toxicity endpoints. Aryl hydrocarbon receptor (AhR), androgenicity (AR+ and AR−), estrogenicity (ER+ and ER−), oxidative stress response (Nrf2) and vitamin D receptor (VDR+ and VDR−) reporter gene assays were evaluated. Results AhR was the reporter gene assay showing a more frequent response over the set of samples (activated by 9 out of 11 samples), with TCDD-eq in the range 7.7–22.2 pM. For AR, ER and VDR assays sporadic activations were observed. Moreover, no activity was observed on the Nrf2 reporter gene assay. Wastewater and street runaway streams from Valencia could be responsible for enhanced activities in one of the water inputs in the Natural Park ‘L’Albufera’. Conclusions Water quality of relevant wetlands from the Spanish Mediterranean coastline has been evaluated. The utilization of a panel of 5 different bioassays to cover for different toxicity endpoints has demonstrated to be a good tool to assess water quality.


Foods ◽  
2016 ◽  
Vol 5 (1) ◽  
pp. 15 ◽  
Author(s):  
Yoshiaki Amakura ◽  
Tomoaki Tsutsumi ◽  
Morio Yoshimura ◽  
Masafumi Nakamura ◽  
Hiroshi Handa ◽  
...  

2019 ◽  
Vol 171 (2) ◽  
pp. 443-462 ◽  
Author(s):  
Nettie van Meteren ◽  
Dominique Lagadic-Gossmann ◽  
Martine Chevanne ◽  
Isabelle Gallais ◽  
Dimitri Gobart ◽  
...  

Abstract Extracellular vesicles (EVs) are membrane-enclosed nanostructures released by cells into the extracellular environment. As major actors of physiological intercellular communication, they have been shown to be pathogenic mediators of several liver diseases. Extracellular vesicles also appear to be potential actors of drug-induced liver injury but nothing is known concerning environmental pollutants. We aimed to study the impact of polycyclic aromatic hydrocarbons (PAHs), major contaminants, on hepatocyte-derived EV production, with a special focus on hepatocyte death. Three PAHs were selected, based on their presence in food and their affinity for the aryl hydrocarbon receptor (AhR): benzo[a]pyrene (BP), dibenzo[a,h]anthracene (DBA), and pyrene (PYR). Treatment of primary rat and WIF-B9 hepatocytes by all 3 PAHs increased the release of EVs, mainly comprised of exosomes, in parallel with modifying exosome protein marker expression and inducing apoptosis. Moreover, PAH treatment of rodents for 3 months also led to increased EV levels in plasma. The EV release involved CYP metabolism and the activation of the transcription factor, the AhR, for BP and DBA and another transcription factor, the constitutive androstane receptor, for PYR. Furthermore, all PAHs increased cholesterol levels in EVs but only BP and DBA were able to reduce the cholesterol content of total cell membranes. All cholesterol changes very likely participated in the increase in EV release and cell death. Finally, we studied changes in cell membrane fluidity caused by BP and DBA due to cholesterol depletion. Our data showed increased cell membrane fluidity, which contributed to hepatocyte EV release and cell death.


2017 ◽  
Vol 280 ◽  
pp. S85-S86
Author(s):  
Martina Hyzdalova ◽  
Jakub Pivnicka ◽  
Ondrej Zapletal ◽  
Gerardo Vazquez-Gomez ◽  
Jason Matthews ◽  
...  

2018 ◽  
Vol 165 (2) ◽  
pp. 447-461 ◽  
Author(s):  
Martina Hýžd′alová ◽  
Jakub Pivnička ◽  
Ondřej Zapletal ◽  
Gerardo Vázquez-Gómez ◽  
Jason Matthews ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document