Chapter 6 Structure and function, of HlyB, the ABC-transporter essential for haemolysin secretion from escherichia coli

Author(s):  
I.B. Holland ◽  
M.A. Blight
1970 ◽  
Vol 117 (3) ◽  
pp. 623-631 ◽  
Author(s):  
Volker Neuhoff ◽  
Wolf-Bernhard Schill ◽  
Hans Sternbach

By using micro disc electrophoresis and micro-diffusion techniques, the interaction of pure DNA-dependent RNA polymerase (EC 2.7.7.6) from Escherichia coli with the template, the substrates and the inhibitors heparin and rifampicin was investigated. The following findings were obtained: (1) heparin converts the 24S and 18S particles of the polymerase into the 13S form; (2) heparin inhibits RNA synthesis by dissociating the enzyme–template complex; (3) rifampicin does not affect the attachment of heparin to the enzyme; (4) the substrates ATP and UTP are bound by enzyme loaded with rifampicin; (5) rifampicin is bound by an enzyme–template complex to the same extent as by an RNA-synthesizing enzyme–template complex. From this it is concluded that the mechanism of the inhibition of RNA synthesis by rifampicin is radically different from that by heparin. As a working hypothesis to explain the inhibitory mechanism of rifampicin, it is assumed that it becomes very firmly attached to a position close to the synthesizing site and only blocks this when no synthesis is in progress.


2008 ◽  
Vol 74 (24) ◽  
pp. 7821-7823 ◽  
Author(s):  
Kai Linke ◽  
Nagarajan Periasamy ◽  
Matthias Ehrmann ◽  
Roland Winter ◽  
Rudi F. Vogel

ABSTRACT High hydrostatic pressure (HHP) is suggested to influence the structure and function of membranes and/or integrated proteins. We demonstrate for the first time HHP-induced dimer dissociation of membrane proteins in vivo with Vibrio cholerae ToxR variants in Escherichia coli reporter strains carrying ctx::lacZ fusions. Dimerization ceased at 20 to 50 MPa depending on the nature of the transmembrane segments rather than on changes in the ToxR lipid bilayer environment.


1993 ◽  
Vol 268 (36) ◽  
pp. 27094-27099
Author(s):  
B Stolz ◽  
M Huber ◽  
Z Marković-Housley ◽  
B Erni

2007 ◽  
Vol 1 (1) ◽  
pp. 89-91 ◽  
Author(s):  
Julien Boudet ◽  
Anne Chouquet ◽  
Aicha Chahboune ◽  
Cécile Giustini ◽  
Bernard Joris ◽  
...  

2017 ◽  
Vol 398 (2) ◽  
pp. 229-235
Author(s):  
Thomas Marcellino ◽  
Vasundara Srinivasan

Abstract ABC exporters are highly dynamic membrane proteins that span a huge spectrum of different conformations. A detailed integrated approach of cellular, biochemical and biophysical characterization of these ‘open’, ‘closed’ and other intermediate states is central to understanding their function. Almost 40 years after the discovery of the first ABC transporter, thanks to the enormous development in methodologies, a picture is slowly emerging to visualize how these fascinating molecules transport their substrates. This mini review summarizes some of the biophysical tools that have made a major impact in understanding the function of the ABC exporters.


Sign in / Sign up

Export Citation Format

Share Document