Carbon monoxide short term measurements at Amsterdam island: estimations of biomass burning emission rates

1999 ◽  
Vol 1 (1-3) ◽  
pp. 163-172 ◽  
Author(s):  
V. Gros ◽  
B. Bonsang ◽  
D. Martin ◽  
P.C. Novelli ◽  
V. Kazan
2005 ◽  
Vol 5 (5) ◽  
pp. 10455-10516 ◽  
Author(s):  
R. Koppmann ◽  
K. von Czapiewski ◽  
J. S. Reid

Abstract. Biomass burning is the burning of living and dead vegetation. Ninety percent of all biomass-burning events are thought to be human initiated. Human induced fires are used for a variety of ''applications'' such as agricultural expansion, deforestation, bush control, weed and residue burning, and harvesting practices. Natural fires are grassland and forest fires mainly induced by lightning. It is estimated that 8700 Tg of dry matter/year are burnt each year in total. Emissions from biomass burning include a wide range of gaseous compounds and particles that contribute significantly to the tropospheric budgets on a local, regional, and even global scales. The emission of CO, CH4 and VOC affect the oxidation capacity of the troposphere by reacting with OH radicals, and emissions of nitric oxide and VOC lead to the formation of ozone and other photo oxidants. For a large number of compounds biomass burning is one of the largest single sources in the troposphere, especially in the tropics. Biomass-burning emissions play an important role in the biogeochemical cycles of carbon and nitrogen. Following the first systematic investigations on fire emissions in laboratory experiments in the 1960's, the last 20 years saw an increasing number in studies on biomass-burning emissions in various ecosystems. Recently, our knowledge of the emissions of gaseous compounds in the troposphere from fires has increased considerably. This manuscript is the first of four describing the properties biomass burning emissions. The properties of biomass-burning particles are discussed in part II and III of this review series which have been recently published, and their direct radiative effects are in part IV. This paper focuses on the review of emission ratios and emission rates of carbon monoxide, methane, volatile organics, and nitrogen containing compounds and should not be seen as a review of global emission estimates, even though we discuss the implications of our results on such studies.


1989 ◽  
Vol 321 (21) ◽  
pp. 1426-1432 ◽  
Author(s):  
Elizabeth N. Allred ◽  
Eugene R. Bleecker ◽  
Bernard R. Chaitman ◽  
Thomas E. Dahms ◽  
Sidney O. Gottlieb ◽  
...  

2012 ◽  
Vol 12 (13) ◽  
pp. 6041-6065 ◽  
Author(s):  
M. O. Andreae ◽  
P. Artaxo ◽  
V. Beck ◽  
M. Bela ◽  
S. Freitas ◽  
...  

Abstract. We present the results of airborne measurements of carbon monoxide (CO) and aerosol particle number concentration (CN) made during the Balanço Atmosférico Regional de Carbono na Amazônia (BARCA) program. The primary goal of BARCA is to address the question of basin-scale sources and sinks of CO2 and other atmospheric carbon species, a central issue of the Large-scale Biosphere-Atmosphere (LBA) program. The experiment consisted of two aircraft campaigns during November–December 2008 (BARCA-A) and May–June 2009 (BARCA-B), which covered the altitude range from the surface up to about 4500 m, and spanned most of the Amazon Basin. Based on meteorological analysis and measurements of the tracer, SF6, we found that airmasses over the Amazon Basin during the late dry season (BARCA-A, November 2008) originated predominantly from the Southern Hemisphere, while during the late wet season (BARCA-B, May 2009) low-level airmasses were dominated by northern-hemispheric inflow and mid-tropospheric airmasses were of mixed origin. In BARCA-A we found strong influence of biomass burning emissions on the composition of the atmosphere over much of the Amazon Basin, with CO enhancements up to 300 ppb and CN concentrations approaching 10 000 cm−3; the highest values were in the southern part of the Basin at altitudes of 1–3 km. The ΔCN/ΔCO ratios were diagnostic for biomass burning emissions, and were lower in aged than in fresh smoke. Fresh emissions indicated CO/CO2 and CN/CO emission ratios in good agreement with previous work, but our results also highlight the need to consider the residual smoldering combustion that takes place after the active flaming phase of deforestation fires. During the late wet season, in contrast, there was little evidence for a significant presence of biomass smoke. Low CN concentrations (300–500 cm−3) prevailed basinwide, and CO mixing ratios were enhanced by only ~10 ppb above the mixing line between Northern and Southern Hemisphere air. There was no detectable trend in CO with distance from the coast, but there was a small enhancement of CO in the boundary layer suggesting diffuse biogenic sources from photochemical degradation of biogenic volatile organic compounds or direct biological emission. Simulations of CO distributions during BARCA-A using a range of models yielded general agreement in spatial distribution and confirm the important contribution from biomass burning emissions, but the models evidence some systematic quantitative differences compared to observed CO concentrations. These mismatches appear to be related to problems with the accuracy of the global background fields, the role of vertical transport and biomass smoke injection height, the choice of model resolution, and reliability and temporal resolution of the emissions data base.


2017 ◽  
Vol 17 (1) ◽  
Author(s):  
Herve Lawin ◽  
Lucie Ayi Fanou ◽  
Vikkey Hinson ◽  
Jacqueline Wanjiku ◽  
N. Kingsley Ukwaja ◽  
...  

2011 ◽  
Vol 11 (11) ◽  
pp. 5289-5303 ◽  
Author(s):  
G. Grell ◽  
S. R. Freitas ◽  
M. Stuefer ◽  
J. Fast

Abstract. A plume rise algorithm for wildfires was included in WRF-Chem, and applied to look at the impact of intense wildfires during the 2004 Alaska wildfire season on weather simulations using model resolutions of 10 km and 2 km. Biomass burning emissions were estimated using a biomass burning emissions model. In addition, a 1-D, time-dependent cloud model was used online in WRF-Chem to estimate injection heights as well as the vertical distribution of the emission rates. It was shown that with the inclusion of the intense wildfires of the 2004 fire season in the model simulations, the interaction of the aerosols with the atmospheric radiation led to significant modifications of vertical profiles of temperature and moisture in cloud-free areas. On the other hand, when clouds were present, the high concentrations of fine aerosol (PM2.5) and the resulting large numbers of Cloud Condensation Nuclei (CCN) had a strong impact on clouds and cloud microphysics, with decreased precipitation coverage and precipitation amounts during the first 12 h of the integration. During the afternoon, storms were of convective nature and appeared significantly stronger, probably as a result of both the interaction of aerosols with radiation (through an increase in CAPE) as well as the interaction with cloud microphysics.


2009 ◽  
Vol 6 (5) ◽  
pp. 369 ◽  
Author(s):  
Valérie Gros ◽  
Ilka Peeken ◽  
Katrin Bluhm ◽  
Eckart Zöllner ◽  
Roland Sarda-Esteve ◽  
...  

Environmental context. Carbon monoxide (CO) is a key component for atmospheric chemistry and its production in the ocean, although minor at the global scale, could play a significant role in the remote marine atmosphere. Up to now, CO production in the ocean was considered to mainly originate from the photo-production of dissolved organic matter (mainly under UV radiation). In this paper, we show evidence for direct production of CO by phytoplankton and we suggest it as a significant mechanism for CO production in the ocean. Abstract. In order to investigate carbon monoxide (CO) emissions by phytoplankton organisms, a series of laboratory experiments was conducted in Kiel (Germany). Nine monocultures, including diatoms, coccolithophorids, chlorophytes and cyanobacteria have been characterised. This was done by following the CO variations from monoculture aliquots exposed to photosynthetically active radiation during one or two complete diurnal cycles. All the studied cultures have shown significant CO production when illuminated. Emission rates have been estimated to range from 1.4 × 10–5 to 8.7 × 10–4 μg of CO μg chlorophyll–1 h–1 depending on the species. When considering the magnitude of the emission rates from the largest CO emitters (cyanobacteria and diatoms), this biotic source could represent up to 20% of the CO produced in oceanic waters. As global models currently mainly consider CO production from the photo-degradation of dissolved organic matter, this study suggests that biotic CO production should also be taken into account. Whether this biological production might also contribute to some degree to the previous observed non-zero CO production below the euphotic zone (dark CO production) cannot be deduced here and needs to be further investigated.


Sign in / Sign up

Export Citation Format

Share Document