Millions to billions: expansion of clinical grade car t-cells in a closed system

Cytotherapy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. S195
Author(s):  
A. Chen ◽  
M. Keir ◽  
Z. Velickovic ◽  
J. Rasko
Cytotherapy ◽  
2018 ◽  
Vol 20 (5) ◽  
pp. S103-S104
Author(s):  
J. Dietrich ◽  
J. Riewaldt ◽  
S. Loff ◽  
J. Meyer ◽  
S. Schallenberg ◽  
...  

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2817-2817
Author(s):  
Ahmad-Samer Al-Homsi ◽  
Sebastien Anguille ◽  
Dries Deeren ◽  
Taiga Nishihori ◽  
Nathalie Meuleman ◽  
...  

Abstract Off-the-shelf allogeneic CAR T cells derived from healthy donor cells have the potential to overcome many of the issues associated with the time-consuming manufacturing of autologous CAR T cells. However, adoptive transfer of allogeneic T cells carries the risk of graft-versus-host disease (GvHD). Most of the clinical experience with allogeneic CAR T cells is based on gene editing to eliminate T cell receptor (TCR) to mitigate the risk of GvHD. While clearly effective, the downsides of gene editing include multiple manufacturing steps requiring multiple clinical grade reagents, thus extending culture times, which can be associated with T cell exhaustion. As an alternative, we have explored short hairpin RNA (shRNA) as a means to knockdown TCR expression at the mRNA level. This shRNA is co-expressed along with the CAR in a single clinical grade vector, therefore requiring just one step of genetic modification. CYAD-211 is an allogeneic anti-BCMA CAR T that co-expresses a shRNA targeting CD3z which results in reduction of cell surface TCR expression. IMMUNICY-1 is an ongoing open-label Phase 1 trial (NCT04613557) designed to evaluate CYAD-211 in adult patients with refractory or relapsed multiple myeloma (MM) following at least two prior MM regimens. Patients receive non-myeloablative preconditioning (cyclophosphamide 300 mg/m²/day and fludarabine 30 mg/m²/day, for 3 days) followed by a single CYAD-211 infusion in a 3+3 dose escalation design evaluating three dose-levels (DL): 30x10 6, 100x10 6 and 300x10 6 cells/infusion. As of July 29, 2021, nine patients were enrolled across the 3 DLs. Patients had received a median of four prior lines of treatment. Seventy-eight percent of patients were previously exposed to all three major MM drug classes (proteasome inhibitors, immunomodulatory drugs, and anti-CD38 antibody therapy). Eight patients had prior autologous stem cell transplantation. CYAD-211 was well tolerated. One patient developed grade 1 cytokine release syndrome. Two patients had Grade ≥ 3 hematologic toxicities possibly related to the experimental treatment. Two patients experienced infectious adverse events (1 grade 1 rhinitis and 1 grade 2 upper respiratory infection). There was no neurologic toxicity and no GvHD. There was no dose-limiting toxicity. Eight patients were evaluated for activity per IMWG criteria. Two patients achieved partial response at dose-levels 1 and 2 while 5 patients had stable disease (SD). One patient with an ongoing SD (3 months +) showed evidence of reduction in size of plasmacytomas. Analysis of peripheral blood samples by molecular methods confirmed the engraftment of CYAD-211. All patients had detectable CAR T cells. However, the engraftment was short lasting (3-4 weeks). There was a correlation between the depth of lymphodepletion and engraftment. There was also a dose-response in terms of CYAD-211 kinetics with a level neighboring 8,000 copies of CAR T per microgram of input DNA in patients at DL3. These early data indicate that CYAD-211 is well tolerated with a good safety profile. While further study is required to fully understand the anti-BCMA potency of the CAR used in this trial, the lack of observed GvHD despite engraftment of CYAD-211 provides proof of concept of the safe administration of CAR T using a shRNA-allogeneic platform. The lack of sustained engraftment of CYAD-211 can be explained by rejection of the allogeneic cells by the recovering immune system of the recipient and calls for exploring the role of augmented lymphodepletion. Furthermore, given the ability to include multiple shRNA within the single CAR vector, future strategies will also examine knocking down other molecules that are important in driving immune rejection. Disclosures Al-Homsi: BMS: Other: Independent Medical Education Grant; Daichii Sankyo: Consultancy; Celyad Oncology: Other: Advisory Board. Deeren: Alexion: Consultancy; BMS: Consultancy; Incyte: Consultancy; Novartis: Consultancy; Sanofi: Consultancy, Research Funding; Sobi: Consultancy; Takeda: Consultancy. Nishihori: Karyopharm: Research Funding; Novartis: Research Funding. Meuleman: iTeos Therapeutics: Consultancy. Abdul-Hay: Amgen: Membership on an entity's Board of Directors or advisory committees; Takeda: Speakers Bureau; Abbvie: Consultancy; Jazz: Other: Advisory Board, Speakers Bureau; Servier: Other: Advisory Board, Speakers Bureau. Braun: Celyad Oncology: Current Employment. Lonez: Celyad Oncology: Current Employment. Dheur: Celyad Oncology: Current Employment. Alcantar-Orozco: Celyad Oncology: Current Employment. Gilham: Celyad Oncology: Current Employment. Flament: Celyad Oncology: Current Employment. Lehmann: Celyad Oncology: Current Employment.


Cytotherapy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. S183 ◽  
Author(s):  
L.M. Brownrigg ◽  
S. Nichols ◽  
E. Bosio ◽  
B. Carnley ◽  
M. Sturm
Keyword(s):  
T Cells ◽  

2018 ◽  
Vol 29 ◽  
pp. viii420
Author(s):  
B. Demoulin ◽  
B. Eytan ◽  
D. Gilham

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Victoria Ann Remley ◽  
Jianjian Jin ◽  
Sarmila Sarkar ◽  
Larry Moses ◽  
Michaela Prochazkova ◽  
...  

Abstract Background Gene transfer is an important tool for cellular therapies. Lentiviral vectors are most effectively transferred into lymphocytes or hematopoietic progenitor cells using spinoculation. To enable cGMP (current Good Manufacturing Practice)-compliant cell therapy production, we developed and compared a closed-system spinoculation method that uses cell culture bags, and an automated closed system spinoculation method to decrease technician hands on time and reduce the likelihood for microbial contamination. Methods Sepax spinoculation, bag spinoculation, and static bag transduction without spinoculation were compared for lentiviral gene transfer in lymphocytes collected by apheresis. The lymphocytes were transduced once and cultured for 9 days. The lentiviral vectors tested encoded a CD19/CD22 Bispecific Chimeric Antigen Receptor (CAR), a FGFR4-CAR, or a CD22-CAR. Sepax spinoculation times were evaluated by testing against bag spinoculation and static transduction to optimize the Sepax spin time. The Sepax spinoculation was then used to test the transduction of different CAR vectors. The performance of the process using healthy donor and a patient sample was evaluated. Functional assessment was performed of the CD19/22 and CD22 CAR T-cells using killing assays against the NALM6 tumor cell line and cytokine secretion analysis. Finally, gene expression of the transduced T-cells was examined to determine if there were any major changes that may have occurred as a result of the spinoculation process. Results The process of spinoculation lead to significant enhancement in gene transfer. Sepax spinoculation using a 1-h spin time showed comparable transduction efficiency to the bag spinoculation, and much greater than the static bag transduction method (83.4%, 72.8%, 35.7% n = 3). The performance of three different methods were consistent for all lentiviral vectors tested and no significant difference was observed when using starting cells from healthy donor versus a patient sample. Sepax spinoculation does not affect the function of the CAR T-cells against tumor cells, as these cells appeared to kill target cells equally well. Spinoculation also does not appear to affect gene expression patterns that are necessary for imparting function on the cell. Conclusions Closed system-bag spinoculation resulted in more efficient lymphocyte gene transfer than standard bag transductions without spinoculation. This method is effective for both retroviral and lentiviral vector gene transfer in lymphocytes and may be a feasible approach for gene transfer into other cell types including hematopoietic and myeloid progenitors. Sepax spinoculation further improved upon the process by offering an automated, closed system approach that significantly decreased hands-on time while also decreasing the risk of culture bag tears and microbial contamination.


Blood ◽  
2016 ◽  
Vol 128 (4) ◽  
pp. 519-528 ◽  
Author(s):  
Marianna Sabatino ◽  
Jinhui Hu ◽  
Michele Sommariva ◽  
Sanjivan Gautam ◽  
Vicki Fellowes ◽  
...  

Key Points A platform for the generation of clinical-grade CD19-CAR–modified TSCM. CD19-CAR–modified TSCM mediate superior antitumor responses compared with CD19-CAR T cells currently used in clinical trials.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 166-166 ◽  
Author(s):  
Partow Kebriaei ◽  
Helen Huls ◽  
Harjeet Singh ◽  
Simon Olivares ◽  
Matthew Figliola ◽  
...  

Abstract Background T cells can be genetically modified ex vivo to redirect specificity upon enforced expression of a chimeric antigen receptor (CAR) that recognizes tumor-associated antigen (TAA) independent of human leukocyte antigen. We report a new approach to non-viral gene transfer using the Sleeping Beauty (SB) transposon/transposase system to stably express a 2nd generation CD19-specific CAR- (designated CD19RCD28 that activates via CD3z/CD28) in autologous and allogeneic T cells manufactured in compliance with current good manufacturing practice (cGMP) for Phase I/II trials. Methods T cells were electroporated using a Nucleofector device to synchronously introduce DNA plasmids coding for SB transposon (CD19RCD28) and hyperactive SB transposase (SB11). T cells stably expressing the CAR were retrieved over 28 days of co-culture by recursive additions of g-irradiated artificial antigen presenting cells (aAPC) in presence of soluble recombinant interleukin (IL)-2 and IL-21. The aAPC (designated clone #4) were derived from K562 cells and genetically modified to co-express the TAA CD19 as well as the co-stimulatory molecules CD86, CD137L, and a membrane-bound protein of IL-15. The dual platforms of the SB system and aAPC are illustrated in figure below. Results To date we have enrolled and manufactured product for 25 patients with multiply-relapsed ALL (n=12) or B-cell lymphoma (n=13) on three investigator-initiated trials at MD Anderson Cancer Center to administer thawed patient- and donor-derived CD19-specific T cells as planned infusions in the adjuvant setting after autologous (n=7), allogeneic adult (n=14) or umbilical cord (n=4) hematopoietic stem-cell transplantation (HSCT). Each clinical-grade T-cell product was subjected to a battery of in-process testing to complement release testing under CLIA. Currently, five patients have been infused with the CAR+ T cells following allogeneic HSCT, including one patient with cord blood-derived T cells (ALL, n=4; NHL, n=1), beginning at a dose of 106 and escalating to 107 modified T cells/m2. Three patients treated at the first dose level of 106 T cells/m2 have progressed; the patient treated at the next dose level with 107 T cells/m2 remains in remission at 5 months following HSCT. Assessment for response too early for patient treated with UCB T cells. Four patients with non-Hodgkin’s lymphoma have been treated with patient-derived modified T cells following autologous HSCT at a dose of 5x107 T cells/m2, and all patients remain in remission at 3 months following HSCT. No acute or late toxicities have been noted to date. PCR testing for persistence of CAR-modified T cells is underway. Conclusion We report the first human application of the SB and aAPC systems to genetically modify clinical-grade cells. Importantly, infusing CD19-specific CAR+ T cells in the adjuvant HSCT setting and thus targeting minimal residual disease is feasible and safe, and may provide an effective approach for maintaining remission in patients with high risk, CD19+ lymphoid malignancies. Clinical data is accruing and will be updated at the meeting. This nimble manufacturing approach can be readily modified in a cost-effective manner to improve the availability, persistence and therapeutic potential of genetically modified T cells, as well as target tumor–associated antigens other than CD19. Disclosures: No relevant conflicts of interest to declare.


Cytotherapy ◽  
2015 ◽  
Vol 17 (6) ◽  
pp. S82
Author(s):  
Pradip Bajgain ◽  
Roopa Mucharla ◽  
Norihiro Watanabe ◽  
John Wilson ◽  
Usanarat Anurathapan ◽  
...  

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2446-2446
Author(s):  
Hideto Chono ◽  
Kenichi Tahara ◽  
Ikuei Nukaya ◽  
Junichi Mineno ◽  
Eisuke Uehara ◽  
...  

Abstract Background; Adoptive immunotherapy with chimeric antigen receptor (CAR) gene transduced CD19-CAR T cells, which are engineered to express extracellular single-chain immunoglobulin variable fragments to CD19, linked to cytoplasmic T cell activation domains including CD3-ζ, showed remarkable therapeutic benefits toward CD19+ B cell malignancies including acute lymphoblastic leukemia, chronic lymphoblastic leukemia and non-Hodgkin lymphoma (B-NHL). For clinical setting, the phenotype of manufactured CAR T cells is an important factor; especially less differentiated T cells are anticipated to provide a long-lasting immune reconstitution. Furthermore, in order to avoid the risk of technical error and contamination during T cell manufacturing process, a closed system needs to be established. In this study, we addressed these issues and have established a novel CD19-CAR T cell manufacturing method from a small amount of blood in a closed system for clinical trial to treat patients with B-NHL. Methods; Peripheral blood was obtained from B-NHL patient volunteers and healthy donor volunteers who gave their written informed consents. Peripheral blood mononuclear cells (PBMCs) were isolated from 30 ml of blood using Ficoll-Paque PREMIUM density gradient centrifugation. PBMCs were stimulated in a plastic bag pre-coated with anti-CD3 monoclonal antibody (OKT3) and recombinant fibronectin fragment (RetroNectin®; RN). Following four days of stimulation, stimulated T cells were transferred into a 215 cm2 plastic bag pre-loaded with SFG-1928z retroviral vector (Brentjens et al., Clin Cancer Res. 2007) onto RN-coated substratum with low-temperature shaking (RBV-LTS method; Dodo et al., PLoS ONE, 2014). After one hour incubation, the bag was flipped over to facilitate more efficient utilization of the retroviral vector adsorbed on both top and bottom surfaces of the bag and further incubated. On Day 5, the transduction procedure was repeated, and the cells were transferred into 640 cm2 plastic bags until Day 10-14 for expansion. Closed system liquid handling was managed in all processes of manipulating T cells for stimulation, transduction, expansion and final product formulation. Results; We have previously reported that the fold expansion of T cells under stimulation with RN together with OKT3 enhanced cell proliferation while preserving the naïve phenotype of T cells in comparison to stimulation with OKT3 alone or OKT3 and anti-CD28 monoclonal antibody co-stimulation. Although B-NHL patients’ T cells showed much lower fold expansion compared to healthy donors’ T cells, 4/7 patients’ CAR T cells reached their target dose of 1 x 106 cells/kg from 30 ml of blood on Day 10. For the other 3 patients, 70-150 ml blood was estimated to be required to reach their target dose. The delay in proliferations was marked in B-NHL patients’ T cells compared to healthy donors’ T cells by Day 5, but B-NHL patients’ T cells represented significant catch-up growth, which was superior to healthy donor T cells during Day 7-14. Gene transfer efficiency of patients’ T cells (N = 7, 17.9 ± 4.7%) was equivalent to that of healthy donors’ T cells (N = 5, 22.2 ± 5.3%), and CAR T cells showed potent anti-tumor reactivity with cytokine productions against CD19 positive Raji cells in vitro. Comparing to CD3/CD28 beads stimulation method, RN/OKT3 stimulation method showed equivalent expansion. Furthermore, RN/OKT3 stimulated T cells preserved higher proportion of CD8+/CCR7+/CD45RA+/CD62L+ naïve phenotype T cells (43.6% in healthy donor and 30.9% in patient donor) compared to CD3/CD28 beads stimulated T cells (22.8% in healthy donor and 11.7% in patient donor). Conclusions; With our novel closed system manufacturing method utilizing RN/OKT3 stimulation combined with RBV-LTS transduction from a small amount of blood of B-NHL patients, we are able to manufacture a sufficient number of CAR T cells maintaining higher proportion of naïve phenotype, which is expected to improve the efficacy of adoptive immunotherapy. In our cell manufacturing, patients are not required to undergo leukapheresis, which is more invasive to patients. Based on our results, we employed our novel manufacturing method for the phase I/II clinical trial to treat patients with relapsed/refractory CD19+ B-NHL (clinicaltrials.gov, identifier; NCT02134262). Disclosures Chono: Takara Bio Inc.: Employment. Tahara:Takara Bio Inc.: Employment. Nukaya:Takara Bio Inc.: Employment. Mineno:Takara Bio Inc.: Membership on an entity's Board of Directors or advisory committees. Tsukahara:Takara Bio Inc.: Research Funding. Ohmine:Takara Bio Inc.: Research Funding. Ozawa:Takara Bio Inc.: Research Funding. Takesako:Takara Bio Inc.: Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document