Clinical-grade manufacturing of switchable CAR-T cells in an automated closed system for phase I/II trials

Cytotherapy ◽  
2018 ◽  
Vol 20 (5) ◽  
pp. S103-S104
Author(s):  
J. Dietrich ◽  
J. Riewaldt ◽  
S. Loff ◽  
J. Meyer ◽  
S. Schallenberg ◽  
...  
Cytotherapy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. S195
Author(s):  
A. Chen ◽  
M. Keir ◽  
Z. Velickovic ◽  
J. Rasko

2016 ◽  
Vol 16 ◽  
pp. S48
Author(s):  
Mark Geyer ◽  
Jae Park ◽  
Isabelle Rivière ◽  
Brigitte Senechal ◽  
Meier Hsu ◽  
...  

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A130-A130
Author(s):  
Jingmei Hsu ◽  
Eric von Hofe ◽  
Michael Hsu ◽  
Koen Van Besien ◽  
Thomas Fahey ◽  
...  

BackgroundThe use of CAR T cells for solid tumors has a number of challenges, such as lack of tumor-specific targets, CAR T cell exhaustion, and the immunosuppressive tumor microenvironment. To address these challenges, AffyImmune has developed technologies to affinity tune and track CAR T cells in patients. The targeting moiety is affinity tuned to preferentially bind to tumor cells overexpressing the target while leaving normal cells with low basal levels untouched, thereby increasing the therapeutic window and allowing for more physiological T cell killing. The CAR T cells are designed to express SSTR2 (somatostatin receptor 2), which allows for the tracking of CAR T cells in vivo via PET/CT scan using FDA-approved DOTATATE.MethodsAIC100 was generated by affinity tuning the I-domain of LFA-1, the physiological ligand to ICAM-1. Various mutants with 106-fold difference in affinity were evaluated for affinity. This allowed structure activity relationships to be conducted using CAR T cells expressing the various affinity mutants against targets with varying antigen densities. The variant with micromolar affinity was clearly the most effective in non-clinical animal models. AIC100 is currently being evaluated to assess safety, CAR T expansion, tumor localization, and preliminary activity in patients with advanced thyroid cancer in a phase I study (NCT04420754). Our study uses a modified toxicity probability interval design with three dosage groups of 10 x 106, 100 x 106, and 500 x 106 cells.ResultsPreclinical studies demonstrated greater in vivo anti-tumor activity and safety with lower affinity CAR T cells. A single dose of AIC100 resulted in tumor elimination and significantly improved survival of animals. AIC100 activity was confirmed in other high ICAM-1 tumor models including breast, gastric, and multiple myeloma. In a Phase I patient given 10-million CAR T cells, near synchronous imaging of FDG and DOTATATE revealed preliminary evidence of transient CAR T expansion and tumor reduction at multiple tumor lesions, with the peak of CAR T density coinciding with the spike in CAR T numbers in blood.ConclusionsWe have developed affinity tuned CAR T cells designed to selectively target ICAM-1 overexpressing tumor cells and to spatiotemporally image CAR T cells. Near-synchronous FDG and DOTATATE scans will enhance patient safety by early detection of off-tumor CAR T activity and validation of tumor response. We anticipate that our ‘tune and track’ technology will be widely applicable to developing potent yet safe CAR T cells against hard-to-treat solid cancers.Trial RegistrationNCT04420754Ethics ApprovalIRB number19-12021154IACUC (animal welfare): All animal experiments were performed in accordance with the National Institute of Health’s Guide for the Care and Use of Laboratory Animals. Animal handling protocols were approved by the Institutional Laboratory Animal Use and Care Committee of Weill Cornell Medicine (Permit Number: 2012–0063).


BMJ Open ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. e034629 ◽  
Author(s):  
Philip George ◽  
Nathaniel Dasyam ◽  
Giulia Giunti ◽  
Brigitta Mester ◽  
Evelyn Bauer ◽  
...  

IntroductionAutologous T-cells transduced to express a chimeric antigen receptor (CAR) directed against CD19 elicit high response rates in relapsed or refractory (r/r) B-cell non-Hodgkin lymphoma (B-NHL). However, r/r B-NHL remissions are durable in fewer than half of recipients of second-generation CAR T-cells. Third-generation (3G) CARs employ two costimulatory domains, resulting in improved CAR T-cell efficacy in vitro and in animal models in vivo. This investigator-initiated, phase I dose escalation trial, termed ENABLE, will investigate the safety and preliminary efficacy of WZTL-002, comprising autologous T-cells expressing a 3G anti-CD19 CAR incorporating the intracellular signalling domains of CD28 and Toll-like receptor 2 (TLR2) for the treatment of r/r B-NHL.Methods and analysisEligible participants will be adults with r/r B-NHL including diffuse large B-cell lymphoma and its variants, follicular lymphoma, transformed follicular lymphoma and mantle cell lymphoma. Participants must have satisfactory organ function, and lack other curative options. Autologous T-cells will be obtained by leukapheresis. Following WZTL-002 manufacture and product release, participants will receive lymphodepleting chemotherapy comprising intravenous fludarabine and cyclophosphamide. A single dose of WZTL-002 will be administered intravenously 2 days later. Targeted assessments for cytokine release syndrome and immune cell effector-associated neurotoxicity syndrome, graded by the American Society Transplantation and Cellular Therapy criteria, will be made. A modified 3+3 dose escalation scheme is planned starting at 5×104 CAR T-cells/kg with a maximum dose of 1×106 CAR T-cells/kg. The primary outcome of this trial is safety of WZTL-002. Secondary outcomes include feasibility of WZTL-002 manufacture and preliminary measures of efficacy.Ethics and disseminationEthical approval for the study was granted by the New Zealand Health and Disability Ethics Committee (reference 19/STH/69) on 23 June 2019 for Protocol V.1.2. Trial results will be reported in a peer-reviewed journal, and results presented at scientific conferences or meetings.Trial registration numberNCT04049513


2020 ◽  
Vol 38 (17) ◽  
pp. 1938-1950 ◽  
Author(s):  
Nirali N. Shah ◽  
Steven L. Highfill ◽  
Haneen Shalabi ◽  
Bonnie Yates ◽  
Jianjian Jin ◽  
...  

PURPOSE Patients with B-cell acute lymphoblastic leukemia who experience relapse after or are resistant to CD19-targeted immunotherapies have limited treatment options. Targeting CD22, an alternative B-cell antigen, represents an alternate strategy. We report outcomes on the largest patient cohort treated with CD22 chimeric antigen receptor (CAR) T cells. PATIENTS AND METHODS We conducted a single-center, phase I, 3 + 3 dose-escalation trial with a large expansion cohort that tested CD22-targeted CAR T cells for children and young adults with relapsed/refractory CD22+ malignancies. Primary objectives were to assess the safety, toxicity, and feasibility. Secondary objectives included efficacy, CD22 CAR T-cell persistence, and cytokine profiling. RESULTS Fifty-eight participants were infused; 51 (87.9%) after prior CD19-targeted therapy. Cytokine release syndrome occurred in 50 participants (86.2%) and was grade 1-2 in 45 (90%). Symptoms of neurotoxicity were minimal and transient. Hemophagocytic lymphohistiocytosis–like manifestations were seen in 19/58 (32.8%) of subjects, prompting utilization of anakinra. CD4/CD8 T-cell selection of the apheresis product improved CAR T-cell manufacturing feasibility as well as heightened inflammatory toxicities, leading to dose de-escalation. The complete remission rate was 70%. The median overall survival was 13.4 months (95% CI, 7.7 to 20.3 months). Among those who achieved a complete response, the median relapse-free survival was 6.0 months (95% CI, 4.1 to 6.5 months). Thirteen participants proceeded to stem-cell transplantation. CONCLUSION In the largest experience of CD22 CAR T-cells to our knowledge, we provide novel information on the impact of manufacturing changes on clinical outcomes and report on unique CD22 CAR T-cell toxicities and toxicity mitigation strategies. The remission induction rate supports further development of CD22 CAR T cells as a therapeutic option in patients resistant to CD19-targeted immunotherapy.


2019 ◽  
Author(s):  
Yogindra Vedvyas ◽  
Jaclyn E. McCloskey ◽  
Yanping Yang ◽  
Irene M. Min ◽  
Thomas J. Fahey ◽  
...  

2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 10035-10035
Author(s):  
Payal D Shah ◽  
Alexander Chan Chi Huang ◽  
Xiaowei Xu ◽  
Paul J. Zhang ◽  
Robert Orlowski ◽  
...  

10035 Background: Advanced relapsed/refractory melanoma and metastatic triple-negative breast cancer are lethal diseases for which effective therapies are limited. We conducted a pilot phase I clinical trial (NCT03060356) to establish the safety and feasibility of intravenous autologous chimeric antigen receptor (CAR) T cell immunotherapy targeting cMET, a cell-surface antigen that is highly expressed in these cancers. Methods: Subjects had metastatic or unresectable melanoma (Mel) or triple-negative breast cancer (BC) with ≥30% expression of cMET on archival tissue or screening biopsy. Eligible subjects had measurable disease and progression on at least 1 prior therapy. Patients (pts) received up to 6 doses (1x108 total T-cells per dose) of RNA electroporated anti-cMET CAR T cells over a 2-week period without antecedent lymphodepleting chemotherapy. Subjects underwent pre- and post-infusion biopsies. The primary objective was to determine feasibility and safety of treatment. Results: 77 subjects (39 mel, 38 BC) were prescreened for tumor cMET expression and 37 (17 mel, 20 BC) met the eligibility threshold. Seven pts (4 BC, 3 Mel) received cMET-directed CAR T infusions on study. Mean age was 50 years (35-64); median (M) ECOG 0 (0-1); M prior lines of chemotherapy/immunotherapy were 4/0 for BC pts and 1/3 for Mel pts. 6 of 7 pts received all planned CAR T cell infusions, and 1 received 5 infusions. 5 pts experienced grade (G) 1 or G 2 toxicity that was possibly or definitely related to study. Toxicities occurring in ≥1 pt included: anemia (n = 3), fatigue (n = 2), and malaise (n = 2). No G ≥3 toxicities or cytokine release syndrome were observed. No pts discontinued therapy due to toxicity. Best response was stable disease in 4 pts (2 BC, 2 Mel) and PD in 3 pts (2 BC, 1 Mel). Messenger RNA signals corresponding to CAR T cells were detected by RT-PCR in the peripheral blood of all pts during the infusion period and in 2 pts after the infusion period. 6 pts underwent baseline biopsy and 4 pts underwent post-infusion biopsy. Immunohistochemical stains of CD3, CD4, CD8, CD163, L26, PD1, PDL1, Foxp3, Ki67, Granzyme B and Phospho-S6 were performed on pre- and post-treatment tissue biopsies and are being evaluated. Conclusions: Intravenous administration of RNA-electroporated cMET-directed CAR T cells was safe and feasible. Future directions include examination of this target using a lentiviral construct in combination with lymphodepleting chemotherapy. Clinical trial information: NCT03060356.


Sign in / Sign up

Export Citation Format

Share Document