Control of separation point in periodic flows including delay effects

2004 ◽  
Vol 37 (12) ◽  
pp. 451-455
Author(s):  
Tamas Insperger ◽  
Francois Lekien ◽  
Hayder Salman ◽  
George Haller ◽  
Gabor Stepan
TAPPI Journal ◽  
2016 ◽  
Vol 15 (7) ◽  
pp. 459-464
Author(s):  
RICARDO SANTOS ◽  
PETER HART

An automated shower water control system has been implemented to reduce the volume and variability of weak black liquor being sent from the pulp mill to the evaporators. The washing controls attempt to balance the need for consistent and low soda carryover to the bleach plant with consistently high weak black liquor solids being sent to the evaporators. The washer controls were implemented on two bleachable grade hardwood lines (one with oxygen delignification, one without oxygen delignification) and one pine line. Implementation of the control program resulted in an increase in black liquor solids of 0.6 percentage points for the hardwood lines. Significant foam reduction was realized on the pine line since the pine black liquor solids were able to be consistently maintained just below the soap separation point. Low black liquor solids excursions to the evaporators were eliminated. Bleach plant carryover was stabilized and no negative impact on chemical consumption was noticed when controlling weak black liquor solids to recovery.


2012 ◽  
Vol 9 (1) ◽  
pp. 94-97
Author(s):  
Yu.A. Itkulova

In the present work creeping three-dimensional flows of a viscous liquid in a cylindrical tube and a channel of variable cross-section are studied. A qualitative triangulation of the surface of a cylindrical tube, a smoothed and experimental channel of a variable cross section is constructed. The problem is solved numerically using boundary element method in several modifications for a periodic and non-periodic flows. The obtained numerical results are compared with the analytical solution for the Poiseuille flow.


Author(s):  
W. Griffin Sullivan ◽  
Isaac L. Howard

The Proctor test method, as specified in AASHTO T134 and ASTM D558, continues to play a vital role in design and construction quality control for soil-cement materials. However, neither test method establishes a methodology or standardized protocols to characterize the effects of time delay between cement addition and compaction, also known as compaction delay. Compaction delay has been well documented to have a notably negative effect on compactability, compressive strength, and overall performance of soil-cement materials, but specification tools to address this behavior are not prevalent. This paper aims to demonstrate the extent of compaction delay effects on several soil-cement mixtures used in Mississippi and to present recommended new test method protocols for AASHTO T134 to characterize compaction delay effects. Data presented showed that not all soil-cement mixtures are sensitive to compaction delay, but some mixtures can be very sensitive and lead to a meaningful decrease in specimen dry density. Recommended test method protocols were presented for AASHTO T134 and commentary was presented to provide state Departments of Transportation and other specifying agencies a few examples of how the new compaction delay protocols could be implemented.


2004 ◽  
Vol 32 (2) ◽  
pp. 213-221 ◽  
Author(s):  
Christopher B Watkins ◽  
Jacqueline F Nock ◽  
Sarah A Weis ◽  
Sastry Jayanty ◽  
Randolph M Beaudry

Sign in / Sign up

Export Citation Format

Share Document