Storage temperature, diphenylamine, and pre-storage delay effects on soft scald, soggy breakdown and bitter pit of ‘Honeycrisp’ apples

2004 ◽  
Vol 32 (2) ◽  
pp. 213-221 ◽  
Author(s):  
Christopher B Watkins ◽  
Jacqueline F Nock ◽  
Sarah A Weis ◽  
Sastry Jayanty ◽  
Randolph M Beaudry
HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1087C-1087
Author(s):  
Renae E. Moran

In 2004, prestorage delays and CA storage were compared for occurrence of disorders. Fruit were harvested at a starch index of 5.9. Fruit were exposed to either a 2- or 5-day prestorage delay at 17 °C; or placed immediately into cold storage (control) at 0.5 °C. An additional treatment was CA storage at 2.5 °C. In February, occurrence of soft scald, soggy breakdown, and bitter pit were measured on 40 fruit per replication. Fruit were from `Honeycrisp'/M.26 trees planted in 1994. Treatments were replicated five times with four trees in each replication. Soft scald was very severe in this year, with 84% of control fruit being affected. Two-day prestorage delay reduced it to 48% and 5-day delay to 21%. Soggy breakdown was also severe with 14% of the fruit being affected. Two- and 5-day delays had no effect on occurrence of soggy breakdown, but CA storage increased it to 65%. Bitter pit was very rare and not affected by any of the treatments. These results demonstrate that in severe cases, shorter prestorage delay is not effective in preventing soft scald or soggy breakdown.


2020 ◽  
Vol 160 ◽  
pp. 111044 ◽  
Author(s):  
Yosef Al Shoffe ◽  
Jacqueline F. Nock ◽  
Tara Auxt Baugher ◽  
Richard P. Marini ◽  
Christopher B. Watkins

2018 ◽  
Vol 28 (4) ◽  
pp. 481-484 ◽  
Author(s):  
Yosef Al Shoffe ◽  
Christopher B. Watkins

Initial short-term storage is a treatment where fruit are cooled to 33 °F for a specific time period and then moved to 38 °F until the end of storage. Its effects on the development of physiological disorders in ‘Honeycrisp’ apples (Malus domestica) were investigated for two seasons. During the first season, fruit were harvested from two orchards and stored at 33 and 38 °F, with and without 1 week of conditioning at 50 °F, or stored for 4 weeks at 33 °F followed by 4 weeks at 38 °F. All fruit were stored for a total of 8 weeks. In the second season, fruit were harvested from one orchard and stored at 38 °F either with or without 1 week of conditioning at 50 °F, or stored for 1 week at 33 °F and moved to 38 °F for 15 weeks followed by 7 d at 68 °F. Short-term storage (1 to 4 weeks) at 33 °F decreased bitter pit for all orchards in the two seasons, except in comparison with the continuous 33 °F storage in the first season; soft scald was also reduced in the first season compared with continuous storage at 33 °F, with higher incidence of soft scald in orchard one compared with orchard two. Initial short-term storage at 33 °F resulted in lower soggy breakdown incidence compared with storage at 33 °F with 1 week of conditioning at 50 °F for fruit from orchard two in the first season, the only year when low-temperature injuries were observed. In conclusion, initial short-term storage at 33 °F followed by storage at 38 °F maintained the highest percentage of healthy fruit in the two seasons.


HortScience ◽  
2017 ◽  
Vol 52 (1) ◽  
pp. 132-137 ◽  
Author(s):  
James P. Mattheis ◽  
David R. Rudell ◽  
Ines Hanrahan

‘Honeycrisp’ apples are susceptible to develop the physiological disorder bitter pit. This disorder typically develops during storage, but preharvest lesion can also develop. ‘Honeycrisp’ is also chilling sensitive, and fruit is typically held at 10–20 °C after harvest for up to 7 days to reduce development of chilling injury (CI) during subsequent cold storage. This temperature conditioning period followed by a lower storage temperature (2–4 °C) reduces CI risk but can exacerbate bitter pit development. Bitter pit development can be impacted in other apple cultivars by the use of controlled atmosphere (CA) storage and/or 1-methylcyclopropene (1-MCP). Studies were conducted to evaluate efficacy of CA and/or 1-MCP to manage ‘Honeycrisp’ bitter pit development. Apples from multiple lots, obtained at commercial harvest, were held at 10 °C for 7 days and then cooled to 3 °C. Half the fruit was exposed to 42 μmol·L−1 1-MCP the day of receipt while held at 10 °C. Fruit were stored in air or CA (3 kPa O2, 0.5 kPa CO2 for 2 days, then 1.5 kPa O2, 0.5 kPa CO2) established after 1 day at 10 °C or after 7 days at 10 °C plus 2 days at 3 °C. Fruit treated with 1-MCP and/or stored in CA developed less bitter pit compared with untreated fruit stored in air, and bitter pit incidence was lowest for 1-MCP-treated fruit with CA established during conditioning. Development of diffuse flesh browning (DFB) and cavities, reported to occur during ‘Honeycrisp’ CA storage, was observed in some lots. Incidence of these disorders was not enhanced by establishing CA 2 days compared with 9 days after harvest. 1-MCP and CA slowed peel color change, loss of soluble solids content (SSC) and titratable acidity (TA), and reduced ethylene production and respiration rate. The results indicate potential for the postharvest management of bitter pit development in ‘Honeycrisp’ apple through use of 1-MCP and/or CA storage.


HortScience ◽  
2003 ◽  
Vol 38 (6) ◽  
pp. 1153-1155 ◽  
Author(s):  
Cindy B.S. Tong ◽  
David S. Bedford ◽  
James J. Luby ◽  
Faye M. Propsom ◽  
Randolph M. Beaudry ◽  
...  

The effects of growing and storage locations and storage temperature on soft scald incidence of `Honeycrisp' apples were examined. In 1999 and 2000, fruits were produced at five different locations, harvested at two different times, and stored at two or five different storage locations. In 1999, fruits were stored at 0 or 2 °C. Soft scald was only observed in fruits from one growing location and primarily at 0 °C. More soft scald was observed from the second harvest than from the first. Scalded fruits were preclimacteric as determined by ethylene production rate, whereas fruits from the other locations were postclimacteric. In 2000, fruits from four of the growing locations developed soft scald, and soft scald incidence was not related to ethylene production rate. Scalded fruits had higher concentrations of phosphorus, boron, and magnesium, and lower concentrations of manganese than unaffected fruit. Development of soft scald was not related to fruit ethylene production rates, was dependent on growing location, increased with later harvest, and may be related to fruit elemental content.


2019 ◽  
Vol 99 (5) ◽  
pp. 761-771 ◽  
Author(s):  
Lee Kalcsits ◽  
James Mattheis ◽  
Luca Giordani ◽  
Michelle Reid ◽  
Katie Mullin

One advantage of high-density apple orchard systems is homogeneity in fruit maturity and quality. However, even in modern orchard systems, variation in fruit quality occurs. ‘Honeycrisp’ apple is susceptible to numerous disorders including bitter pit, soft scald, and poor colour development. Heterogeneity in fruit quality and nutrient distribution can lead to variation in fruit storability. Here, we tested the effect of within-canopy position on fruit calcium and potassium concentrations, quality, and disorder development for fruit across nine representative high-density orchards. Calcium concentrations were greater in the upper part of the canopy compared with the lower part. Potassium was more evenly distributed within the canopy. Calcium concentrations and potassium-to-calcium ratios were significantly correlated with mean bitter pit incidence, which was between 20% and 30% in the lower half of the tree and <15% in the upper half. Fruit quality was significantly affected by the position in the canopy and was not constrained to only colour, but also other quality metrics such as dry matter, size, and firmness. Additionally, the internal ethylene concentrations (IECs) of fruit in the upper canopy were approximately 50% of the IECs for fruit from the lower canopy. With an increased emphasis on uniformity and predictability of fruit for long-term storage, these results underscore the importance of understanding variation within the canopy. Even for high-density systems, significant variation in fruit quality can occur and fruit from the upper canopy has lower disorder incidence and higher fruit quality than fruit from the lower canopy.


HortScience ◽  
2019 ◽  
Vol 54 (9) ◽  
pp. 1532-1539 ◽  
Author(s):  
Corina Serban ◽  
Lee Kalcsits ◽  
Jennifer DeEll ◽  
James P. Mattheis

‘Honeycrisp’ apples are susceptible to bitter pit, a physiological disorder that impacts peel and adjacent cortex tissue. ‘Honeycrisp’ is also susceptible to chilling injury (CI) that can be prevented by holding fruit at 10 to 20 °C after harvest for up to 7 days. This temperature conditioning period reduces CI risk but can enhance bitter pit development. Previous research demonstrated a controlled atmosphere (CA) established during conditioning can reduce ‘Honeycrisp’ bitter pit development without inducing other physiological disorders. The objective of this research was to evaluate the duration of CA needed to reduce bitter pit development. Experiments were conducted in 2014, 2016, and 2017 with fruit obtained from commercial orchards in Washington State and, in 2017 only, Ontario, Canada. Half the fruit were treated with 42 µmol·L−1 1-methycyclopropene (1-MCP) for 24 hours at 10 °C immediately following harvest. The untreated fruit were held at the same temperature (10 °C) in a different cold room. Following 1-MCP treatment, all fruit were conditioned at 10 °C for an additional 6 days, then fruit was cooled to 2.8 °C. During conditioning, fruit were held in air or CA (2.5 kPa O2, 0.5 kPa CO2) established 1 day after harvest, for 1 to 8 weeks, then in air. All fruit were removed from cold storage after 4 months and then held 7 days at 20 °C. Fruit from most orchards/years stored in CA developed less bitter pit compared with fruit stored continuously in air. CA during conditioning also reduced poststorage peel greasiness but CA for 2 weeks or longer enhanced cortex cavity development in some orchard lots. Treatment with 1-MCP did not reduce bitter pit but enhanced development of peel leather blotch and core browning for some orchards/years. 1-MCP–treated fruit slowed the loss of soluble solids content, titratable acidity, and reduced internal ethylene concentration. Results suggest the potential for postharvest management of bitter pit development in ‘Honeycrisp’ apples by CA established during conditioning with minimal development of other postharvest disorders.


2015 ◽  
Vol 25 (3) ◽  
pp. 385-391 ◽  
Author(s):  
Alan R. Biggs ◽  
Gregory M. Peck

Three separate experiments were conducted to test standard calcium chloride salt (CaCl2) rates and several new formulations of calcium (Ca) for amelioration of bitter pit, a Ca-related physiological disorder that affects fruit of many apple (Malus ×domestica) cultivars, including the popular cultivar Honeycrisp. Even small amounts of bitter pit damage make apples unmarketable. We evaluated various formulations of Ca to compare their effectiveness in controlling bitter pit, including proprietary Ca products (InCa™, Sysstem-Cal™, Vigor-Cal™, XD10, and XD505) with and without antitranspirant. Calcium chloride is the most common Ca product used to reduce bitter pit incidence, but it has negative impacts, such as phytotoxicity and corrosiveness. Of the products that were tested in 2011, XD10 at the high rate and XD505 are candidates for future study. In 2012, both the CaCl2 and XD10 treatments had lower bitter pit severity than the nontreated control, but only the CaCl2 treatments had a lower total percentage of fruit with bitter pit compared with the control. The antitranspirant reduced bitter pit incidence in one of three treatments. Full season Ca treatments and higher rates (up to 23.5 lb/acre per season of elemental Ca) are needed to significantly reduce bitter pit incidence in ‘Honeycrisp’ apples in the mid-Atlantic United States.


HortScience ◽  
2017 ◽  
Vol 52 (3) ◽  
pp. 423-431 ◽  
Author(s):  
Rachel S. Leisso ◽  
Ines Hanrahan ◽  
James P. Mattheis ◽  
David R. Rudell

The physiology and metabolism characterizing postharvest chilling and CO2 injury in apple has important implications for postharvest management of soft scald and soggy breakdown. This research assessed differences of primary metabolism related to soggy breakdown (cortex CI) and CO2 cortex injury in ‘Honeycrisp’ apple fruit. Results indicate that prestorage temperature conditioning, diphenylamine (DPA), and CA treatments alter fruit metabolism and affect peel and cortex storage disorder outcome. A preliminary summary of primary metabolism involved with soggy breakdown under high CO2 includes increased activity in glycolysis/gluconeogenesis, propionate metabolism, and alanine, aspartate, and glutamate metabolism.


Sign in / Sign up

Export Citation Format

Share Document