Dual Self-Tuning Parameter-Robust Minimax Output Regulation of a First-Order Process with Ellipsoidal Uncertainty

1997 ◽  
Vol 30 (11) ◽  
pp. 1427-1432
Author(s):  
P. Löhnberg ◽  
J.W. Polderman ◽  
R. Eisenberg
1939 ◽  
Vol 23 (1) ◽  
pp. 21-39 ◽  
Author(s):  
Aurin M. Chase ◽  
Emil L. Smith

1. Measurements of visual purple regeneration in solution have been made by a procedure which minimized distortion of the results by other color changes so that density changes caused by the regenerating substance alone are obtained. 2. Bleaching a visual purple solution with blue and violet light causes a greater subsequent regeneration than does an equivalent bleaching with light which lacks blue and violet. This is due to a photosensitive substance which has a gradually increasing effective absorption toward the shorter wavelengths. It is uncertain whether this substance is a product of visual purple bleaching or is present in the solution before illumination. 3. The regeneration of visual purple measured at 560 mµ is maximal at about pH 6.7 and decreases markedly at more acid and more alkaline pH's. 4. The absorption spectrum of the regenerating material shows only a concentration change during the course of regeneration, but has a higher absorption at the shorter wavelengths than has visual purple before illumination. 5. Visual purple extractions made at various temperatures show no significant difference in per cent of regeneration. 6. The kinetics of regeneration is usually that of a first order process. Successive regenerations in the same solution have the same velocity constant but form smaller total amounts of regenerated substance. 7. In vivo, the frog retina shows no additional oxygen consumption while visual purple is regenerating.


1996 ◽  
Vol 50 (11) ◽  
pp. 1352-1359 ◽  
Author(s):  
Ping Chiang ◽  
Kuang-Pang Li ◽  
Tong-Ming Hseu

An idealized model for the kinetics of benzo[ a]pyrene (BaP) metabolism is established. As observed from experimental results, the BaP transfer from microcrystals to the cell membrane is definitely a first-order process. The rate constant of this process is signified as k1. We describe the surface–midplane exchange as reversible and use rate constants k2 and k3 to describe the inward and outward diffusions, respectively. The metabolism is identified as an irreversible reaction with a rate constant k4. If k2 and k3 are assumed to be fast and not rate determining, the effect of the metabolism rate, k4, on the number density of BaP in the midplane of the microsomal membrane, m3, can be estimated. If the metabolism rate is faster than or comparable to the distribution rates, k2 and k3, the BaP concentration in the membrane midplane, m3, will quickly be dissipated. But if k4 is extremely small, m3 will reach a plateau. Under conditions when k2 and k3 also play significant roles in determining the overall rate, more complicated patterns of m3 are expected.


Author(s):  
M.Z. Ismail ◽  
M.H.N. Talib ◽  
Z. Ibrahim ◽  
J. Mat Lazi ◽  
Z. Rasin

<span>Fuzzy logic controller (FLC) has shown excellent performance in dealing with the non-linearity and complex dynamic model of the induction motor. However, a conventional constant parameter FLC (CPFL) will not be able to provide–good coverage performance for a wide speed range operation with a single tuning parameter. Therefore, this paper proposed a self tuning mechanism FLC approach by model reference adaptive controller (ST-MRAC) to continuously allow to adjust the parameters. Due to real time hardware application, the dominant rules selection method for simplified rules has been implemented as part of the reducing computational burden. Experiment results validate a good performance of the ST-MRAC compared to the CPFL for the   speed performance in terms of the wide range of operations and disturbance showed remarkable performance.</span>


1992 ◽  
Vol 281 (1) ◽  
pp. 211-218 ◽  
Author(s):  
D P Baker ◽  
C Kleanthous ◽  
J N Keen ◽  
E Weinhold ◽  
C A Fewson

D(–)-Mandelate dehydrogenase, the first enzyme of the mandelate pathway in the yeast Rhodotorula graminis, catalyses the NAD(+)-dependent oxidation of D(–)-mandelate to phenylglyoxylate. D(–)-2-(Bromoethanoyloxy)-2-phenylethanoic acid [‘D(–)-bromoacetylmandelic acid’], an analogue of the natural substrate, was synthesized as a probe for reactive and accessible nucleophilic groups within the active site of the enzyme. D(–)-Mandelate dehydrogenase was inactivated by D(–)-bromoacetylmandelate in a psuedo-first-order process. D(–)-Mandelate protected against inactivation, suggesting that the residue that reacts with the inhibitor is located at or near the active site. Complete inactivation of the enzyme resulted in the incorporation of approx. 1 mol of label/mol of enzyme subunit. D(–)-Mandelate dehydrogenase that had been inactivated with 14C-labelled D(–)-bromoacetylmandelate was digested with trypsin; there was substantial incorporation of 14C into two tryptic-digest peptides, and this was lowered in the presence of substrate. One of the tryptic peptides had the sequence Val-Xaa-Leu-Glu-Ile-Gly-Lys, with the residue at the second position being the site of radiolabel incorporation. The complete sequence of the second peptide was not determined, but it was probably an N-terminally extended version of the first peptide. High-voltage electrophoresis of the products of hydrolysis of modified protein showed that the major peak of radioactivity co-migrated with N tau-carboxymethylhistidine, indicating that a histidine residue at the active site of the enzyme is the most likely nucleophile with which D(–)-bromoacetylmandelate reacts. D(–)-Mandelate dehydrogenase was incubated with phenylglyoxylate and either (4S)-[4-3H]NADH or (4R)-[4-3H]NADH and then the resulting D(–)-mandelate and NAD+ were isolated. The enzyme transferred the pro-R-hydrogen atom from NADH during the reduction of phenylglyoxylate. The results are discussed with particular reference to the possibility that this enzyme evolved by the recruitment of a 2-hydroxy acid dehydrogenase from another metabolic pathway.


1964 ◽  
Vol 119 (4) ◽  
pp. 537-546 ◽  
Author(s):  
Stig Bryde Andersen ◽  
Mogens Bjørneboe

The turnover of 131I-labeled gamma globulin has been determined in rabbits before and during (8 weeks later) hyperimmunization with pneumococcic vaccine, which increased the gamma globulin concentration 5 to 10 times. Before immunization fractional turnover rate was an average of 36 per cent of the plasma pool per day, and the rate of catabolism was 133 mg/kg/day. During hyperimmunization fractional turnover rate was an average of 37 per cent per day, and the rate of catabolism was 1160 mg/kg/day. The observation that the fractional turnover rate is independent of the concentration suggests that the rate of breakdown should have the characteristic of a first order process.


Sign in / Sign up

Export Citation Format

Share Document