scholarly journals 827. Strategy Escalation: An Emerging Paradigm for Safe Clinical Development of T Cell Gene Therapies

2010 ◽  
Vol 18 ◽  
pp. S319
Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2313
Author(s):  
Suk-Ling Ma ◽  
Junyi Wu ◽  
Liuying Zhu ◽  
Ruth Chan ◽  
Amy Wang ◽  
...  

Background: Sarcopenia is a major health problem in older adults. Exercise and nutrient supplementation have been shown to be effective interventions but there are limited studies to investigate their effects on the management of sarcopenia and its possible underlying mechanisms. Here, we studied T cell gene expression responses to interventions in sarcopenia. Methods: The results of this study were part of a completed trial examining the effectiveness of a 12-week intervention with exercise and nutrition supplementation in community-dwelling Chinese older adults with sarcopenia, based on the available blood samples at baseline and 12 weeks from 46 randomized participants from three study groups, namely: exercise program alone (n = 11), combined-exercise program and nutrition supplement (n = 23), and waitlist control group (n = 12). T cell gene expression was evaluated, with emphasis on inflammation-related genes. Real-time PCR (RT-PCR) was performed on CD3 T cells in 38 selected genes. Correlation analysis was performed to relate the results of gene expression analysis with lower limb muscle strength performance, measured using leg extension tests. Results: Our results showed a significant improvement in leg extension for both the exercise program alone and the combined groups (p < 0.001). Nine genes showed significant pre- and post-difference in gene expression over 12 weeks of intervention in the combined group. Seven genes (RASGRP1, BIN1, LEF1, ANXA6, IL-7R, LRRN3, and PRKCQ) showed an interaction effect between intervention and gene expression levels on leg extension in the confirmatory analysis, with confounder variables controlled and FDR correction. Conclusions: Our findings showed that T cell-specific inflammatory gene expression was changed significantly after 12 weeks of intervention with combined exercise and HMB supplementation in sarcopenia, and that this was associated with lower limb muscle strength performance.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A730-A730
Author(s):  
Wenqing Jiang ◽  
Zhengyi Wang ◽  
Zhen Sheng ◽  
Jaeho Jung ◽  
Taylor Guo

Background4-1BB (CD137) is a co-stimulatory receptor that stimulates the function of multiple immune cells. Its ability to induce potent anti-tumor activity makes 4-1BB an attractive target for immuno-oncology. However, clinical development of a monospecific 4-1BB agonistic antibody has been hampered by dose-limiting hepatic toxicities. To minimize systemic toxicities, we have developed a novel Claudin18.2 (CLDN18.2) x 4-1BB bispecific antibody, TJ-CD4B (ABL111) that stimulates 4-1BB pathway only when it engages with Claudin 18.2, a tumor-associated antigen specifically expressed in gastrointestinal cancers. TJ-CD4B (ABL111) is now being evaluated in patients with advanced solid tumors in a first-in-human trial (NCT04900818).MethodsTJ-CD4B (ABL111) was evaluated in vivo using the human 4-1BB knock-in mice bearing CLDN18.2 expressing MC38 tumor cells. Pharmacodynamic effects upon treatment were characterized in tumor tissue and blood. Immunophenotyping of the tumor microenvironment (TME) and peripheral blood was performed by flow cytometry. Soluble biomarkers were measured using Luminex-based multiplex assay. In-depth gene expression analysis was performed on primary human CD8+ T cells that were co-cultured with CLDN18.2 expressing cells in the presence of anti-CD3 using NanoString nCounter®. Pharmacokinetic (PK) and toxicity study were performed in cynomolgus monkeys.ResultsTJ-CD4B (ABL111) elicited complete tumor regression in 13 out of 18 MC38 tumor bearing mice given at a dose above 2 mg/kg. Dose-dependent anti-tumor activity was associated with enhanced T cell activation in TME and expansion of memory T cells in the peripheral blood. Increased CD8+ T cells number and proliferation were observed in both tumor nest and surrounding stroma while the level of soluble 4-1BB in the serum was also elevated in response to the treatment. In vitro gene expression analysis by Nanostring revealed TJ-CD4B(ABL111) effectively activated immune pathways characterized by IFN?-signaling and T cell inflammation. Preclinically, TJ-CD4B was well tolerated at the repeated doses up to 100 mg/kg/wk in cynomolgus monkeys without the adverse influence on the liver function which is generally affected by 4-1BB activation. Besides, no cytokine release or immune activation was observed in the periphery.ConclusionsTJ-CD4B (ABL111) is a novel CLDN18.2 dependent 4-1BB bispecific agonist antibody that induced T cell activation and memory response in tumor with CLDN18.2 expression, leading to a strong anti-tumor activity in vivo. TJ-CD4B did not induce systemic immune response nor hepatic toxicity due to the CLDN18.2 dependent 4-1BB stimulation. These data warrant the current clinical development in phase I trial to validate the safety properties and tumor specific responses.


2018 ◽  
Author(s):  
Defne A. Amado ◽  
Julianne M. Rieders ◽  
Fortunay Diatta ◽  
Pilar Hernandez-Con ◽  
Adina Singer ◽  
...  

AbstractAdeno-associated virus (AAV)-mediated gene replacement is emerging as a safe and effective means of correcting single-gene mutations, and use of AAV vectors for treatment of diseases of the CNS is increasing. AAV-mediated progranulin gene (GRN) delivery has been proposed as a treatment for GRN-deficient frontotemporal dementia (FTD) and neuronal ceroid lipofuscinosis (NCL), and two recent studies using focal intraparenchymal AAV-Grn delivery to brain have shown moderate success in histopathologic and behavioral rescue in mouse FTD models. Here, we used AAV9 to deliver GRN to the lateral ventricle to achieve widespread expression in the Grn null mouse brain. We found that despite a global increase in progranulin throughout many brain regions, overexpression of GRN resulted in dramatic and selective hippocampal toxicity and degeneration affecting both neurons and glia. Histologically, hippocampal degeneration was preceded by T cell infiltration and perivascular cuffing, suggesting an inflammatory component to the ensuing neuronal loss. GRN delivery with an ependymal-targeting AAV for selective secretion of progranulin into the cerebrospinal fluid (CSF) similarly resulted in T cell infiltration as well as ependymal hypertrophy. Interestingly, overexpression of GRN in wild-type animals also provoked T cell infiltration. These results call into question the safety of GRN overexpression in the CNS, with evidence for both a region-selective immune response and cellular proliferative response following GRN gene delivery. Our results highlight the importance of careful consideration of target gene biology and cellular response to overexpression in relevant animal models prior to progressing to the clinic.Significance StatementGene therapies using adeno-associated viral (AAV) vectors show great promise for many human diseases, including diseases that affect the central nervous system (CNS). Frontotemporal dementia (FTD) and neuronal ceroid lipofuscinosis (NCL) are neurodegenerative diseases resulting from loss of one or both copies of the gene encoding progranulin (GRN), and gene replacement has been proposed for these currently untreatable disorders. Here, we used two different AAV vectors to induce widespread brain GRN expression in mice lacking the gene, as well as in wild-type mice. Unexpectedly, GRN overexpression resulted in T cell infiltration, followed by marked hippocampal neurodegeneration. Our results call into question the safety of GRN overexpression in the CNS, with wider implications for development of CNS gene therapies.


2021 ◽  
Vol 3 ◽  
Author(s):  
Eleni Papanikolaou ◽  
Andreas Bosio

It has been over 30 years since visionary scientists came up with the term “Gene Therapy,” suggesting that for certain indications, mostly monogenic diseases, substitution of the missing or mutated gene with the normal allele via gene addition could provide long-lasting therapeutic effect to the affected patients and consequently improve their quality of life. This notion has recently become a reality for certain diseases such as hemoglobinopathies and immunodeficiencies and other monogenic diseases. However, the therapeutic wave of gene therapies was not only applied in this context but was more broadly employed to treat cancer with the advent of CAR-T cell therapies. This review will summarize the gradual advent of gene therapies from bench to bedside with a main focus on hemopoietic stem cell gene therapy and genome editing and will provide some useful insights into the future of genetic therapies and their gradual integration in the everyday clinical practice.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Daniel Remondini ◽  
Nathan Intrator ◽  
Claudia Sala ◽  
Michela Pierini ◽  
Paolo Garagnani ◽  
...  

2016 ◽  
Vol 24 ◽  
pp. S304
Author(s):  
Kevin G. Haworth ◽  
Christina Ironside ◽  
Hans-Peter Kiem

Sign in / Sign up

Export Citation Format

Share Document