scholarly journals 436. Novel SIN Lentiviral Vector Producer Cell Lines Constructed with SIN γ-Retroviral Vectors Yield High Titer Product Which Efficiently Transduces Human CD34+ NOG Repopulating Stem Cells

2008 ◽  
Vol 16 ◽  
pp. S165
2002 ◽  
Vol 76 (5) ◽  
pp. 2192-2198 ◽  
Author(s):  
Wenbiao Chen ◽  
Shawn Burgess ◽  
Greg Golling ◽  
Adam Amsterdam ◽  
Nancy Hopkins

ABSTRACT Vesicular stomatitis virus glycoprotein G-pseudotyped mouse retroviral vectors have been used as mutagens for a large-scale insertional mutagenesis screen in the zebra fish. To reproducibly generate high-titer virus stocks, we devised a method for rapidly selecting cell lines that can yield high-titer viruses and isolated a producer cell line that yields virus at a high titer on zebra fish embryos. Virus produced from this line, designated GT virus, is nontoxic following injection of zebra fish blastulae and efficiently infects embryonic cells that give rise to the future germ line. Using GT virus preparations we generated roughly 500,000 germ line-transmissible proviral insertions in a population of 25,000 founder fish in about 2 months. The GT virus contains a gene trap, and trap events can be detected in the offspring of almost every founder fish. We discuss potential applications of this highly efficient method for generating germ line-transmissible insertions in a vertebrate


Blood ◽  
2009 ◽  
Vol 113 (21) ◽  
pp. 5104-5110 ◽  
Author(s):  
Robert E. Throm ◽  
Annastasia A. Ouma ◽  
Sheng Zhou ◽  
Anantharaman Chandrasekaran ◽  
Timothy Lockey ◽  
...  

AbstractRetroviral vectors containing internal promoters, chromatin insulators, and self-inactivating (SIN) long terminal repeats (LTRs) may have significantly reduced genotoxicity relative to the conventional retroviral vectors used in recent, otherwise successful clinical trials. Large-scale production of such vectors is problematic, however, as the introduction of SIN vectors into packaging cells cannot be accomplished with the traditional method of viral transduction. We have derived a set of packaging cell lines for HIV-based lentiviral vectors and developed a novel concatemeric array transfection technique for the introduction of SIN vector genomes devoid of enhancer and promoter sequences in the LTR. We used this method to derive a producer cell clone for a SIN lentiviral vector expressing green fluorescent protein, which when grown in a bioreactor generated more than 20 L of supernatant with titers above 107 transducing units (TU) per milliliter. Further refinement of our technique enabled the rapid generation of whole populations of stably transformed cells that produced similar titers. Finally, we describe the construction of an insulated, SIN lentiviral vector encoding the human interleukin 2 receptor common γ chain (IL2RG) gene and the efficient derivation of cloned producer cells that generate supernatants with titers greater than 5 × 107 TU/mL and that are suitable for use in a clinical trial for X-linked severe combined immunodeficiency (SCID-X1).


Author(s):  
Hiroko Baba ◽  
Hideki Hida ◽  
Yuji Kodama ◽  
Cha-Gyun Jung ◽  
Chun-Zhen Wu ◽  
...  

2005 ◽  
Vol 79 (1) ◽  
pp. 87-94 ◽  
Author(s):  
Neal S. Van Hoeven ◽  
A. Dusty Miller

ABSTRACT Enzootic nasal tumor virus (ENTV) and jaagsiekte sheep retrovirus (JSRV) are closely related retroviruses that cause epithelial cancers of the respiratory tract in sheep and goats. Both viruses use the glycosylphosphatidylinositol (GPI)-anchored cell surface protein hyaluronidase 2 (Hyal2) as a receptor for cell entry, and entry is mediated by the envelope (Env) proteins encoded by these viruses. Retroviral vectors bearing JSRV Env can transduce cells from a wide range of species, with the exception of rodent cells. Because of the low titer of vectors bearing ENTV Env, it has been difficult to determine the tropism of ENTV vectors, which appeared to transduce cells from sheep and humans only. Here we have developed high-titer ENTV packaging cells and confirm that ENTV has a restricted host range compared to that of JSRV. Most cells that are not transduced by JSRV or ENTV vectors can be made susceptible following expression of human Hyal2 on the cells. However, five rat cell lines from different rat strains and different tissues that were engineered to express human Hyal2 were still only poorly infected by ENTV vectors, even though the ENTV Env protein could bind well to human Hyal2 expressed on four of these cell lines. These results indicate the possibility of a coreceptor requirement for these viruses.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2036-2036
Author(s):  
Uimook Choi ◽  
Narda Theobald ◽  
Throm E Robert ◽  
John Gray ◽  
David J. Rawlings ◽  
...  

Abstract Chronic granulomatous disease (CGD) is an inherited immune deficiency due to mutations in the genes for the NADPH subunits (the genes for p47phox, p22phox, p67phox, p40phox autosomal chronic granulomatous disease), or gp91phox (X-linked chronic granulomatous disease). This results in a failure to generate phagocyte-derived superoxide and related reactive oxygen intermediates (ROIs), the major defect in chronic granulomatous disease causing recurrent infections and granulomatous complications. Hematopoietic stem cell transplantation (HSCT) with a suitable donor is potentially curative. However, in the absence of HLA-matched donor, gene therapy using autologous gene-corrected HSC offers potential for significant clinical benefit. To date, despite myeloid conditioning, gene therapy for CGD patients using gamma-retroviral vectors have achieved either minimal long-term gene marking and engraftment, or has been associated with insertional mutagenesis. In contrast, lentivector-mediated gene therapy has successfully treated patients with Wiskott-Aldrich syndrome and Metachromatic Leukodystrophy without any dysregulated clonal expansion. We used a lentivector construct which incorporates an MND internal promoter, a modified self-inactivating MoMuLV LTR U3 region with myeloproliferative sarcoma virus enhancer, and a 650bp single chicken b-globin insulator encoding codon-optimized p47phox gene. Mutations in p47phox accounts for the majority of AR-CGD. The production of large-scale, consistently-high-titer lentivector using a transient 4-plasmid transfection system however, is labor- and cost-prohibitive. To address this, we applied concatemeric array transfection of pCL20cW650 MND-p47-OPT into a stable packaging cell line (GPRTG) for HIV-based lentiviral vectors to create a stable producer of VSV-G pseudotyped pCL20cW650 MND-p47OP. The concatemer array of HIV lentiviral vector construct and bleomycin selectable gene cassette showed 10 copies of lentiviral vector in a stable producer line, capable of producing vector at 10^7 IU/ml. Hematopoietic CD34+ stem cells from p47phox- CGD were transduced with pCL20cW650 MND-p47-OPT vector (MOI 10) with 2 overnight transductions following 24 hours pre-activation with SCF, FLT-3L and TPO (100ng/ml). Following three weeks in vitro culture, non-transduced or transduced p47 CGD HSC versus normal HSC were 0%, 42% and 20% p47phox positive, respectively. To determine functional correction, PMA stimulated oxidant production was measured using the dihydrorhodamine assay, confirmation similar levels of oxidant generation in transduced patient cells compared with normal controls. More than 90% of CFU were vector positive, indicating a high level of gene marking. Transduced and control naïve p47phox-patient CD34+ HSC were transplanted into 20 immunodeficient Nodscid-gc deficient (NSG) mice, and at 13 weeks post-transplant the CD13+ human neutrophils arising in mouse bone marrow were assessed for p47phox expression. Over 40% CD13+ neutrophils expressed p47phox protein from NSG mice transplanted with transduced p47-patient CD34 HSC, compared with 74% or 0% in mice transplanted with normal CD34 or p47 patient naive CD34 cells respectively. Detailed histopathology of each transplanted mice confirmed the absence of vector insertion-related myeloid tumors, and deep sequencing of bone marrow CD45+ human cells from each mouse also demonstrated polyclonal distribution of vector integration sites. In conclusion, we provide preclinical data demonstrating the efficacy and safety of high titer VSVg-pseudotyped lentivector (CL20cW650 MND-p47-OPT) generated by our stable GPTRG p47 lenti-producer for correction of p47phox-deficient human CD34 HSC. Disclosures No relevant conflicts of interest to declare.


2006 ◽  
Vol 53 (4) ◽  
pp. 815-823 ◽  
Author(s):  
Anna Szyda ◽  
Maria Paprocka ◽  
Agnieszka Krawczenko ◽  
Katarzyna Lenart ◽  
Jerzy Heimrath ◽  
...  

Human stem and progenitor cells have recently become objects of intensive studies as an important target for gene therapy and regenerative medicine. Retroviral vectors are among the most effective tools for genetic modification of these cells. However, their transduction efficiency strongly depends on the choice of the ex vivo transduction system. The aim of this study was to elaborate a system for retroviral vector transduction of human CD34 positive cells isolated from cord blood. The retroviral vector pMINV EGFP was chosen for transduction of two human erythroblastoid cell lines: KG-1a (CD34 positive) and K562 (CD34 negative). For vector construction, three promoters and two retroviral vector packaging cell lines were used. To optimize the physicochemical conditions of the transduction process, different temperatures of supernatant harvesting, the influence of centrifugation and the presence of transduction enhancing agents were tested. The conditions elaborated with KG-1a cells were further applied for transduction of CD34 positive cells isolated from cord blood. The optimal efficiency of transduction of CD34 positive cells with pMINV EGFP retroviral vector (26% of EGFP positive cells), was obtained using infective vector with LTR retroviral promoter, produced by TE FLY GA MINV EGFP packaging cell line. The transduction was performed in the presence of serum, at 37 degrees C, with co-centrifugation of cells with viral supernatants and the use of transduction enhancing agents. This study confirmed that for gene transfer into CD34 positive cells, the detailed optimization of each element of the transduction process is of great importance.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1020-1020
Author(s):  
Hardik Modi ◽  
Liang Li ◽  
Su Chu ◽  
Ravi Bhatia

Abstract The critical mechanisms underlying human hematopoietic stem cell (HSC) transformation by the BCR-ABL gene in chronic myeloid leukemia (CML) are still not well understood. Since treatment with imatinib fails to eliminate primitive CML hematopoietic cells, there is a pressing need to identify additional mechanisms that can be targeted to enhance elimination of CML stem cells. A tyrosine residue at position 177 (Y177) in the BCR-ABL protein binds the adapter protein Grb2 and appears to play an important role in BCR-ABL induced myeloid leukemogenesis in murine CML models. We have recently shown that a tyrosine to phenylalanine mutation of Y177 (Y177F) also results in significant reduction of abnormalities in proliferation and differentiation in BCR-ABL expressing human CD34+ cells and in BCR-ABL induced activation of Ras, Akt and STAT5 signaling (Cancer Res200767:7045). Since Grb2 signaling is implicated in several other human malignancies and likely plays an important role in signaling downstream of BCR-ABL, we were interested in investigating the role of Grb2 in BCR-ABL-mediated transformation of primary human hematopoietic cells. Cord blood (CB) CD34+ cells were transduced with bicistronic retrovirus vectors coexpressing wild type or Y177F mutated BCR-ABL genes with the GFP gene. Coimmunoprecipitation studies confirmed the association of Grb2 with BCR-ABL and was abrogated by the Y177F mutation. We next investigated the effect of inhibition of Grb2 expression in BCR-ABL transduced human CD34+ cells. CB CD34+ cells were co-transduced with retroviral vectors coexpressing the BCR-ABL and GFP genes or control vectors expressing the GFP gene alone together with lentivirus vectors coexpressing Grb2 shRNA constructs and the dsRed gene or the dsRed gene alone. Cells expressing CD34+, GFP and dsRed were selected using flow cytometry. Western blot analysis indicated that Grb2 levels were reduced by 80.8±14.5% (n=3, P < 0.014); in CD34+ cells transduced with BCR-ABL and Grb2 shRNA compared with cells expressing BCR-ABL alone. Expression of Grb2 shRNA resulted in significant reduction in expansion of BCR-ABL expressing CD34+ cells compared with cells expressing BCR-ABL alone after 7 days of culture in serum free medium (SFM) with low concentrations of growth factor similar to those present in bone marrow stroma conditioned medium (BA alone 48.5±7.7; BA+Grb2 shRNA, 16.7±4.7, n=3). Co-expression of Grb2 shRNA also resulted in significant reduction in the total number of colonies generated by BCR-ABL expressing CD34+ cells in methylcellulose progenitor culture (BA, 123±31; BA+Grb2, 40±9; n=3, p<0.03), with reduction being seen mainly for erythroid colonies. Expression of Grb2 shRNA also reduced cell expansion from control CD34+ expressing GFP alone but the difference was not statistically significant. Similarly Grb2 inhibition did not result in a significant difference in the number of colonies generated from control CD34+ cells. Grb2 inhibition was associated with reduced levels of P-MAPK, but not P-AKT in BCR-ABL expressing CD34+ cells. Interestingly Grb2 inhibition also results in decreased levels of P-STAT5 consistent with the observed reduction in erythroid colonies. In conclusion RNAi mediated inhibition of Grb2 expression results in significant inhibition of BCR-ABL induced proliferation of human CD34+ cells proliferation, indicating an important role for Grb2 in BCR-ABL mediated transformation of CML cells. These observations support further evaluation of inhibition of Grb2 signaling in targeting of CML stem cells.


Intervirology ◽  
2007 ◽  
Vol 50 (3) ◽  
pp. 197-203 ◽  
Author(s):  
Ina Rattmann ◽  
Veronika Kleff ◽  
Anja Feldmann ◽  
Carsten Ludwig ◽  
Ursula Regina Sorg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document