scholarly journals 629: Endoplasmic reticulum membrane complex is required for CFTR biogenesis and activation in vivo

2021 ◽  
Vol 20 ◽  
pp. S299
Author(s):  
Y. Huang ◽  
X. Tang ◽  
T. Weaver ◽  
J. Whitsett ◽  
A. Naren
2020 ◽  
Vol 6 (50) ◽  
pp. eaba8237
Author(s):  
Sofia Rodriguez-Gallardo ◽  
Kazuo Kurokawa ◽  
Susana Sabido-Bozo ◽  
Alejandro Cortes-Gomez ◽  
Atsuko Ikeda ◽  
...  

Protein sorting in the secretory pathway is crucial to maintain cellular compartmentalization and homeostasis. In addition to coat-mediated sorting, the role of lipids in driving protein sorting during secretory transport is a longstanding fundamental question that still remains unanswered. Here, we conduct 3D simultaneous multicolor high-resolution live imaging to demonstrate in vivo that newly synthesized glycosylphosphatidylinositol-anchored proteins having a very long chain ceramide lipid moiety are clustered and sorted into specialized endoplasmic reticulum exit sites that are distinct from those used by transmembrane proteins. Furthermore, we show that the chain length of ceramide in the endoplasmic reticulum membrane is critical for this sorting selectivity. Our study provides the first direct in vivo evidence for lipid chain length–based protein cargo sorting into selective export sites of the secretory pathway.


2019 ◽  
Vol 30 (3) ◽  
pp. 443-459 ◽  
Author(s):  
Yasunobu Ishikawa ◽  
Sorin Fedeles ◽  
Arnaud Marlier ◽  
Chao Zhang ◽  
Anna-Rachel Gallagher ◽  
...  

BackgroundSEC63 encodes a resident protein in the endoplasmic reticulum membrane that, when mutated, causes human autosomal dominant polycystic liver disease. Selective inactivation of Sec63 in all distal nephron segments in embryonic mouse kidney results in polycystin-1–mediated polycystic kidney disease (PKD). It also activates the Ire1α-Xbp1 branch of the unfolded protein response, producing Xbp1s, the active transcription factor promoting expression of specific genes to alleviate endoplasmic reticulum stress. Simultaneous inactivation of Xbp1 and Sec63 worsens PKD in this model.MethodsWe explored the renal effects of postnatal inactivation of Sec63 alone or with concomitant inactivation of Xbp1 or Ire1α, specifically in the collecting ducts of neonatal mice.ResultsThe later onset of inactivation of Sec63 restricted to the collecting duct does not result in overt activation of the Ire1α-Xbp1 pathway or cause polycystin-1–dependent PKD. Inactivating Sec63 along with either Xbp1 or Ire1α in this model causes interstitial inflammation and associated fibrosis with decline in kidney function over several months. Re-expression of XBP1s in vivo completely rescues the chronic kidney injury observed after inactivation of Sec63 with either Xbp1 or Ire1α.ConclusionsIn the absence of Sec63, basal levels of Xbp1s activity in collecting ducts is both necessary and sufficient to maintain proteostasis (protein homeostasis) and protect against inflammation, myofibroblast activation, and kidney functional decline. The Sec63-Xbp1 double knockout mouse offers a novel genetic model of chronic tubulointerstitial kidney injury, using collecting duct proteostasis defects as a platform for discovery of signals that may underlie CKD of disparate etiologies.


1984 ◽  
Vol 99 (3) ◽  
pp. 1076-1082 ◽  
Author(s):  
M G Rosenfeld ◽  
E E Marcantonio ◽  
J Hakimi ◽  
V M Ort ◽  
P H Atkinson ◽  
...  

Ribophorins are two transmembrane glycoproteins characteristic of the rough endoplasmic reticulum, which are thought to be involved in the binding of ribosomes. Their biosynthesis was studied in vivo using lines of cultured rat hepatocytes (clone 9) and pituitary cells (GH 3.1) and in cell-free synthesis experiments. In vitro translation of mRNA extracted from free and bound polysomes of clone 9 cells demonstrated that ribophorins are made exclusively on bound polysomes. The primary translation products of ribophorin messengers obtained from cultured hepatocytes or from regenerating livers co-migrated with the respective mature proteins, but had slightly higher apparent molecular weights (2,000) than the unglycosylated forms immunoprecipitated from cells treated with tunicamycin. This indicates that ribophorins, in contrast to all other endoplasmic reticulum membrane proteins previously studied, contain transient amino-terminal insertion signals which are removed co-translationally. Kinetic and pulse-chase experiments with [35S]methionine and [3H]mannose demonstrated that ribophorins are not subjected to electrophoretically detectable posttranslational modifications, such as proteolytic cleavage or trimming and terminal glycosylation of oligosaccharide side chain(s). Direct analysis of the oligosaccharides of ribophorin l showed that they do not contain the terminal sugars characteristic of complex oligosaccharides and that they range in composition from Man8GlcNAc to Man5GlcNAc. These findings, as well as the observation that the mature proteins are sensitive to endoglycosidase H and insensitive to endoglycosidase D, are consistent with the notion that the biosynthetic pathway of the ribophorins does not require a stage of passage through the Golgi apparatus.


2000 ◽  
Vol 11 (11) ◽  
pp. 3859-3871 ◽  
Author(s):  
Sandra Wittke ◽  
Martin Dünnwald ◽  
Nils Johnsson

SEC62 encodes an essential component of the Sec-complex that is responsible for posttranslational protein translocation across the membrane of the endoplasmic reticulum in Saccharomyces cerevisiae. The specific role of Sec62p in translocation was not known and difficult to identify because it is part of an oligomeric protein complex in the endoplasmic reticulum membrane. An in vivo competition assay allowed us to characterize and dissect physical and functional interactions between Sec62p and components of the Sec-complex. We could show that Sec62p binds via its cytosolic N- and C-terminal domains to the Sec-complex. The N-terminal domain, which harbors the major interaction site, binds directly to the last 14 residues of Sec63p. The C-terminal binding site of Sec62p is less important for complex stability, but adjoins the region in Sec62p that might be involved in signal sequence recognition.


2000 ◽  
Vol 20 (18) ◽  
pp. 6923-6934 ◽  
Author(s):  
Mehdi Kabani ◽  
Jean-Marie Beckerich ◽  
Claude Gaillardin

ABSTRACT We previously characterized the SLS1 gene in the yeastYarrowia lipolytica and showed that it interacts physically with YlKar2p to promote translocation across the endoplasmic-reticulum membrane (A. Boisramé, M. Kabani, J. M. Beckerich, E. Hartmann, and C. Gaillardin, J. Biol. Chem. 273:30903–30908, 1998). A Y. lipolytica Kar2p mutant was isolated that restored interaction with an Sls1p mutant, suggesting that the interaction with Sls1p could be nucleotide and/or conformation dependent. This result was used as a working hypothesis for more accurate investigations in Saccharomyces cerevisiae. We show by two-hybrid an in vitro assays that the S. cerevisiae homologue of Sls1p interacts with ScKar2p. Using dominant lethal mutants of ScKar2p, we were able to show that ScSls1p preferentially interacts with the ADP-bound conformation of the molecular chaperone. Synthetic lethality was observed between ΔScsls1 and translocation-deficientkar2 or sec63-1 mutants, providing in vivo evidence for a role of ScSls1p in protein translocation. Synthetic lethality was also observed with ER-associated degradation and folding-deficient kar2 mutants, strongly suggesting that Sls1p functions are not restricted to the translocation process. We show that Sls1p stimulates in a dose-dependent manner the binding ofScKar2p on the lumenal J domain of Sec63p fused to glutathione S-transferase. Moreover, Sls1p is shown to promote the Sec63p-mediated activation of Kar2p's ATPase activity. Our data strongly suggest that Sls1p could be the first GrpE-like protein described in the endoplasmic reticulum.


2020 ◽  
Author(s):  
Bahnisikha Barman ◽  
Jie Ping ◽  
Evan Krystofiak ◽  
Ryan Allen ◽  
Nripesh Prasad ◽  
...  

SummaryRNA transferred via extracellular vesicles (EVs) can influence cell and tissue phenotypes; however, the biogenesis of RNA-containing EVs is poorly understood and even controversial. Here, we identify the conserved endoplasmic reticulum membrane contact site (MCS) linker protein VAP-A as a major regulator of the RNA and RNA-binding protein content of small and large EVs. We also identify a unique subpopulation of secreted small EVs that is highly enriched in RNA and regulated by VAP-A. Functional experiments revealed that VAP-A-regulated EVs are critical for the transfer of miR-100 between cells and for in vivo tumor formation. Lipid analysis of VAP-A-knockdown EVs revealed large alterations in lipids known to regulate EV biogenesis, including ceramides and cholesterol. Knockdown of VAP-A-binding ceramide and cholesterol transfer proteins CERT and ORP1L led to similar defects in biogenesis of RNA-containing EVs. We propose that lipid transfer at VAP-A-positive MCS drives biogenesis of a select RNA-containing EV population.


2020 ◽  
Vol 295 (33) ◽  
pp. 11473-11485
Author(s):  
Mona Mirheydari ◽  
Prabuddha Dey ◽  
Geordan J. Stukey ◽  
Yeonhee Park ◽  
Gil-Soo Han ◽  
...  

The Nem1-Spo7 complex in the yeast Saccharomyces cerevisiae is a protein phosphatase that catalyzes the dephosphory-lation of Pah1 phosphatidate phosphatase, required for its translocation to the nuclear/endoplasmic reticulum membrane. The Nem1–Spo7/Pah1 phosphatase cascade plays a major role in triacylglycerol synthesis and in the regulation of phospholipid synthesis. In this work, we examined Spo7, a regulatory subunit required for Nem1 catalytic function, to identify residues that govern formation of the Nem1-Spo7 complex. By deletion analysis of Spo7, we identified a hydrophobic Leu-Leu-Ile (LLI) sequence comprising residues 54–56 as being required for the protein to complement the temperature-sensitive phenotype of an spo7Δ mutant strain. Mutational analysis of the LLI sequence with alanine and arginine substitutions showed that its overall hydrophobicity is crucial for the formation of the Nem1-Spo7 complex as well as for the Nem1 catalytic function on its substrate, Pah1, in vivo. Consistent with the role of the Nem1–Spo7 complex in activating the function of Pah1, we found that the mutational effects of the Spo7 LLI sequence were on the Nem1–Spo7/Pah1 axis that controls lipid synthesis and related cellular processes (e.g. triacylglycerol/phospholipid synthesis, lipid droplet formation, nuclear/endoplasmic reticulum membrane morphology, vacuole fusion, and growth on glycerol medium). These findings advance the understanding of Nem1-Spo7 complex formation and its role in the phosphatase cascade that regulates the function of Pah1 phosphatidate phosphatase.


Sign in / Sign up

Export Citation Format

Share Document