Tracking Control of Autonomous Underwater Vehicles with Internal Moving Mass

2008 ◽  
Vol 34 (10) ◽  
pp. 1319-1323 ◽  
Author(s):  
Jia-Wang LI ◽  
Bao-Wei SONG ◽  
Cheng SHAO
2021 ◽  
Vol 117 ◽  
pp. 102928
Author(s):  
Jiaqi Zheng ◽  
Lei Song ◽  
Lingya Liu ◽  
Wenbin Yu ◽  
Yiyin Wang ◽  
...  

Robotica ◽  
2017 ◽  
Vol 36 (3) ◽  
pp. 374-394 ◽  
Author(s):  
Khoshnam Shojaei

SUMMARYMost of the previous works on the motion control of autonomous underwater vehicles (AUVs) assume that (i) the vehicle actuators are able to tolerate every level of the control signals, and (ii) the vehicle is equipped with the velocity sensors in all degrees of freedom. These assumptions are not desirable in practice. Toward this end, this paper addresses the trajectory tracking control of the underactuated AUVs with the limited torque, without the velocity measurements and under environmental disturbances in a three-dimensional space. At first, a variable transformation is introduced which helps us to derive a second-order dynamic model for underactuated AUVs. Then, a saturated tracking controller is proposed by employing the saturation functions to bound the closed-loop error variables. This technique reduces the risk of the actuators saturation by decreasing the amplitude of the generated control signals. In addition, a nonlinear saturated observer is introduced to remove the velocity sensors from the control system. The proposed controller copes with the uncertain vehicle parameters, and constant or time-varying environmental disturbances induced by the waves and ocean currents. Lyapunov's direct method is used to show the semi-global uniform ultimate boundedness of the tracking and state estimation errors. Finally, some simulation results illustrate the effectiveness of the proposed controller.


2021 ◽  
Vol 11 (17) ◽  
pp. 8038
Author(s):  
Dongzhou Zhan ◽  
Huarong Zheng ◽  
Wen Xu

The absence of global positioning system (GPS) signals and the influence of ocean currents are two of the main challenges facing the autonomy of autonomous underwater vehicles (AUVs). This paper proposes an acoustic localization-based tracking control method for AUVs. Particularly, three buoys that emit acoustic signals periodically are deployed over the surface. Times of arrivals of these acoustic signals at the AUV are then obtained and used to calculate an estimated position of the AUV. Moreover, the uncertainties involved in the localization and ocean currents are handled together in the framework of the extended Kalman filter. To deal with system physical constraints, model predictive control relying on online repetitive optimizations is applied in the tracking controller design. Furthermore, due to the different sampling times between localization and control, the dead-reckoning technique is utilized considering detailed AUV dynamics. To avoid using the highly nonlinear and complicated AUV dynamics in the online optimizations, successive linearizations are employed to achieve a trade-off between computational complexity and control performance. Simulation results show that the proposed algorithms are effective and can achieve the AUV tracking control goals.


Sign in / Sign up

Export Citation Format

Share Document