Investigation into perturbed nucleoside metabolism and cell cycle for elucidating the cytotoxicity effect of resveratrol on human lung adenocarcinoma epithelial cells

2019 ◽  
Vol 17 (8) ◽  
pp. 608-615
Author(s):  
Zheng LI ◽  
Qian-Qian CHEN ◽  
Christopher Wai Kei LAM ◽  
Jian-Ru GUO ◽  
Wei-Jia ZHANG ◽  
...  
Cancers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1384 ◽  
Author(s):  
Shang-Tse Ho ◽  
Chi-Chen Lin ◽  
Yu-Tang Tung ◽  
Jyh-Horng Wu

Yatein is an antitumor agent isolated from Calocedrus formosana Florin leaves extract. In our previous study, we found that yatein inhibited the growth of human lung adenocarcinoma A549 and CL1-5 cells by inducing intrinsic and extrinsic apoptotic pathways. To further uncover the effects and mechanisms of yatein-induced inhibition on A549 and CL1-5 cell growth, we evaluated yatein-mediated antitumor activity in vivo and the regulatory effects of yatein on cell-cycle progression and microtubule dynamics. Flow cytometry and western blotting revealed that yatein induces G2/M arrest in A549 and CL1-5 cells. Yatein also destabilized microtubules and interfered with microtubule dynamics in the two cell lines. Furthermore, we evaluated the antitumor activity of yatein in vivo using a xenograft mouse model and found that yatein treatment altered cyclin B/Cdc2 complex expression and significantly inhibited tumor growth. Taken together, our results suggested that yatein effectively inhibited the growth of A549 and CL1-5 cells possibly by disrupting cell-cycle progression and microtubule dynamics.


2021 ◽  
Vol 17 (6) ◽  
pp. e1009091
Author(s):  
Sonja Langthaler ◽  
Theresa Rienmüller ◽  
Susanne Scheruebel ◽  
Brigitte Pelzmann ◽  
Niroj Shrestha ◽  
...  

Lung cancer is still a leading cause of death worldwide. In recent years, knowledge has been obtained of the mechanisms modulating ion channel kinetics and thus of cell bioelectric properties, which is promising for oncological biomarkers and targets. The complex interplay of channel expression and its consequences on malignant processes, however, is still insufficiently understood. We here introduce the first approach of an in-silico whole-cell ion current model of a cancer cell, in particular of the A549 human lung adenocarcinoma, including the main functionally expressed ion channels in the plasma membrane as so far known. This hidden Markov-based model represents the electrophysiology behind proliferation of the A549 cell, describing its rhythmic oscillation of the membrane potential able to trigger the transition between cell cycle phases, and it predicts membrane potential changes over the cell cycle provoked by targeted ion channel modulation. This first A549 in-silico cell model opens up a deeper insight and understanding of possible ion channel interactions in tumor development and progression, and is a valuable tool for simulating altered ion channel function in lung cancer electrophysiology.


Sign in / Sign up

Export Citation Format

Share Document