scholarly journals Expression profiles of Cry1Ab protein and its insecticidal efficacy against the invasive fall armyworm for Chinese domestic GM maize DBN9936

2021 ◽  
Vol 20 (3) ◽  
pp. 792-803 ◽  
Author(s):  
Jin-gang LIANG ◽  
Dan-dan ZHANG ◽  
Dong-yang LI ◽  
Sheng-yuan ZHAO ◽  
Chen-yao WANG ◽  
...  
2021 ◽  
Vol 33 (1) ◽  
Author(s):  
André Felipe Lohn ◽  
Miluse Trtikova ◽  
Ignacio Chapela ◽  
Rosa Binimelis ◽  
Angelika Hilbeck

Abstract Background In 2009, Spanish farmers reported a novel weed, now identified as a relative of maize’s ancestor, teosinte, in their maize fields. Introgression of the insect resistance transgene cry1Ab from genetically modified (GM) maize into populations of this weedy Spanish teosinte could endow it with additional defense mechanisms. The aims of this study were: (1) to test if hybridization between GM maize and weedy plants from Spain is possible; (2) to understand the relationship between transgene transcription activity, concentrations of the expected transgene product (Cry1Ab protein) and the bioactivity of the latter on target insect pests following transgene flow from GM maize into Spanish teosinte plants. Results We demonstrated that hybridization between GM maize and the weedy Spanish teosinte is possible, with no observable barrier to the formation of crop/weed hybrids when teosinte served as pollen donor. When GM maize plants were used as pollen donors, significant crossing incompatibility was observed: hybrid plants produced only few “normal” seeds. Nevertheless, viable F1 seeds from GM pollen crossed onto teosinte were indeed obtained. The cry1Ab transgene was stably expressed as mRNA in all crossings and backgrounds. Similarly, toxicity on neonate Ostrinia nubilalis, presumably due to Cry1Ab protein, was consistently expressed in teosinte hybrids, with mortality rates 95% or higher after only 4 days exposure, similar to rates on parental GM maize plants. Nevertheless, no strong correlations were observed between transgene transcription levels and Cry1Ab concentrations, nor between Cry1Ab concentrations and insect mortality rates across all of the different genetic backgrounds. Conclusions Our results establish fundamental parameters for environmental risk assessments in the European context: first, we show that crop/weed hybridization in fields where maize and teosinte exist sympatrically can lead to potentially catastrophic transfer of resistance traits into an already noxious weed; second, our results question the viability of using gene dosage to model and predict ecological performance in either the intended crop plant or the undesired teosinte weed. Significant questions remain that should be addressed in order to provide a scientific, sound approach to the management of this novel weed.


Insects ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 193 ◽  
Author(s):  
Jin-Meng Guo ◽  
Xiao-Long Liu ◽  
Si-Ruo Liu ◽  
Zhi-Qiang Wei ◽  
Wei-Kang Han ◽  
...  

Pheromone receptors (PRs) found in the antennae of male moths play a vital role in the recognition of sex pheromones released by females. The fall armyworm (FAW), Spodoptera frugiperda, is a notorious invasive pest, but its PRs have not been reported. In this report, six candidate PRs (SfruOR6, 11, 13, 16, 56 and 62) suggested by phylogenetic analysis were cloned, and their tissue–sex expression profiles were determined by quantitative real-time PCR (qPCR). All six genes except for SfruOR6 were highly and specifically expressed in the antennae, with SfruOR6, 13 and 62 being male-specific, while the other three (SfruOR11, 16 and 56) were male biased, suggesting their roles in sex pheromone perception. A functional analysis by the Xenopus oocyte system further demonstrated that SfruOR13 was highly sensitive to the major sex pheromone component Z9-14:OAc and the pheromone analog Z9,E12-14:OAc, but less sensitive to the minor pheromone component Z9-12:OAc; SfruOR16 responded weakly to pheromone component Z9-14:OAc, but strongly to pheromone analog Z9-14:OH; the other four candidate PRs did not respond to any of the four pheromone components and four pheromone analogs. This study contributes to clarifying the pheromone perception in the FAW, and provides potential gene targets for developing OR-based pest control techniques.


2013 ◽  
Vol 79 (24) ◽  
pp. 7735-7744 ◽  
Author(s):  
Stefan G. Buzoianu ◽  
Maria C. Walsh ◽  
Mary C. Rea ◽  
Lisa Quigley ◽  
Orla O'Sullivan ◽  
...  

ABSTRACTThe aim was to investigate transgenerational effects of feeding genetically modified (GM) maize expressing a truncated form ofBacillus thuringiensisCry1Ab protein (Bt maize) to sows and their offspring on maternal and offspring intestinal microbiota. Sows were assigned to either non-GM or GM maize dietary treatments during gestation and lactation. At weaning, offspring were assigned within sow treatment to non-GM or GM maize diets for 115 days, as follows: (i) non-GM maize-fed sow/non-GM maize-fed offspring (non-GM/non-GM), (ii) non-GM maize-fed sow/GM maize-fed offspring (non-GM/GM), (iii) GM maize-fed sow/non-GM maize-fed offspring (GM/non-GM), and (iv) GM maize-fed sow/GM maize-fed offspring (GM/GM). Offspring of GM maize-fed sows had higher counts of fecal total anaerobes andEnterobacteriaceaeat days 70 and 100 postweaning, respectively. At day 115 postweaning, GM/non-GM offspring had lower ilealEnterobacteriaceaecounts than non-GM/non-GM or GM/GM offspring and lower ileal total anaerobes than pigs on the other treatments. GM maize-fed offspring also had higher ileal total anaerobe counts than non-GM maize-fed offspring, and cecal total anaerobes were lower in non-GM/GM and GM/non-GM offspring than in those from the non-GM/non-GM treatment. The only differences observed for major bacterial phyla using 16S rRNA gene sequencing were that fecalProteobacteriawere less abundant in GM maize-fed sows prior to farrowing and in offspring at weaning, with fecalFirmicutesmore abundant in offspring. While other differences occurred, they were not observed consistently in offspring, were mostly encountered for low-abundance, low-frequency bacterial taxa, and were not associated with pathology. Therefore, their biological relevance is questionable. This confirms the lack of adverse effects of GM maize on the intestinal microbiota of pigs, even following transgenerational consumption.


Insects ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 997
Author(s):  
Jia-Ying Zhu ◽  
Lu Li ◽  
Kai-Ran Xiao ◽  
Shu-Qi He ◽  
Fu-Rong Gui

The fall armyworm (FAW), Spodoptera frugiperda, is a serious pest of crucial crops causing great threats to the food security of the world. It has evolved resistance to various insecticides, while the underlying molecular mechanisms remain largely unknown. Cuticular proteins (CPs), as primary components in cuticle, play an important role in insects’ protection against environmental stresses. Few of them have been documented as participating in insecticide resistance in several insect species. In order to explore whether CP genes of the FAW exhibit a functional role in responding to insecticides stress, a total of 206 CPs, classified into eight families, were identified from the genome of the FAW through a homology-based approach coupled with manual efforts. The temporal expression profiles of all identified CP genes across developmental stages and their responses to 23 different insecticides were analyzed using the RNA-seq data. Expression profiling indicated that most of the CP genes displayed stage-specific expression patterns. It was found that the expression of 51 CP genes significantly changed after 48 h exposure to 17 different insecticides. The expression of eight CP genes responding to four insecticides were confirmed by RT-PCR analysis. The results showed that their overall expression profiles were consistent with RNA-seq analysis. The findings provide a basis for further functional investigation of CPs implied in insecticide stress in FAW.


2009 ◽  
Vol 18 (5) ◽  
pp. 801-808 ◽  
Author(s):  
Anna Coll ◽  
Anna Nadal ◽  
Rosa Collado ◽  
Gemma Capellades ◽  
Joaquima Messeguer ◽  
...  

2004 ◽  
Vol 171 (4S) ◽  
pp. 349-350
Author(s):  
Gaelle Fromont ◽  
Michel Vidaud ◽  
Alain Latil ◽  
Guy Vallancien ◽  
Pierre Validire ◽  
...  

2014 ◽  
Vol 84 (3-4) ◽  
pp. 0183-0195 ◽  
Author(s):  
Takashi Nakamura ◽  
Tomoya Takeda ◽  
Yoshihiko Tokuji

The common water-soluble organic germanium compound poly-trans-[(2-carboxyethyl) germasesquioxane] (Ge-132) exhibits activities related to immune responses and antioxidant induction. In this study, we evaluated the antioxidative effect of dietary Ge-132 in the plasma of mice. Male ICR mice (seven mice per group) received an AIN-76 diet with 0.05 % Ge-132; three groups received the Ge-132-containing diet for 0, 1 or 4 days. The plasma alpha-tocopherol (α-tocopherol) concentration increased from 6.85 to 9.60 μg/ml after 4 days of Ge-132 intake (p < 0.05). We evaluated the changes in hepatic gene expression related to antioxidative activity as well as in the entire expression profile after one day of Ge-132 intake, using DNA microarray technology. We identified 1,220 genes with altered expression levels greater than 1.5-fold (increased or decreased) as a result of Ge-132 intake, and α-tocopherol transfer protein (Ttpa) gene expression was increased 1.62-fold. Immune activation was identified as the category with the most changes (containing 60 Gene Ontology (GO) term biological processes (BPs), 41 genes) via functional clustering analysis of altered gene expression. Ge-132 affected genes in clusters related to ATP production (22 GO term BPs, 21 genes), lipid metabolism (4 GO term BPs, 38 genes) and apoptosis (5 GO term BPs). Many GO term BPs containing these categories were significantly affected by the Ge-132 intake. Oral Ge-132 intake may therefore have increased plasma α-tocopherol levels by up-regulating α-tocopherol transfer protein (Ttpa) gene expression.


Sign in / Sign up

Export Citation Format

Share Document