Electric Resistivity

2021 ◽  
pp. 292-360
Keyword(s):  
2014 ◽  
Vol 53 (4) ◽  
pp. 425-434 ◽  
Author(s):  
René E. Chávez ◽  
Gerardo Cifuentes-Nava ◽  
J. Esteban Hernández-Quintero ◽  
Diana Vargas ◽  
Andrés Tejero

It is well known that when thin leaves of gold or silver are mounted upon glass and heated to a temperature which is well below a red heat, a remarkable change of properties takes place, whereby the continuity of the metallic film is destroyed. The result is that white light is now freely transmitted, reflection is correspondingly diminished, while the electric resistivity is enormously increased. A simple method of illustrating this extraordinary change is to mount a sheet of silver leaf between two clean lantern plates, clip them lightly together by means of wire paper fasteners or other suitable means, and then heat gradually to a temperature of not more than 500°C. This can be done con­veniently by placing the plates on a thin fire-brick in a cold gas muffle, and then raising the temperature to the desired point. The gas should now be turned off, and the glass plates allowed to cool slowly, so as to avoid cracking. They can then be bound with strips like an ordinary lantern plate, and a permanent example of transparent silver is obtained. It will be found that such a plate transmits the light of the electric lantern almost as readily as ordinary glass, and does not produce any change of colour. The great trans­parency of the film may be shown by placing the plate upon printing or writing, and photographing the characters through the plate. Every detail of the characters can be reproduced with remarkable clearness. At first sight it is perhaps difficult to conceive that so distinct an impression could be obtained through what was originally a perfectly opaque sheet of silver, and which has only been once heated to a moderate temperature.


1994 ◽  
Vol 353 ◽  
Author(s):  
Sergey V. Stefanovsky ◽  
Igor A. Ivanov ◽  
Anatolii N. Gulin

AbstractTo immobilize a high sulfate radioactive wastes a system Na2O-A12O3-P2O5-SO3 has been chosen as one where glasses have a relatively low melting points and good chemical durability. Glasses within partial system 44 Na2O, 20 A12O3 (36-x) P2O5 x SO3 have been prepared at 1000 °C. A possibility of assimilation up to 12 mole % of SO3 has been established. The basic properties of sulfate-containing glasses as density, microhardness, thermal expansion coefficient, transformation and deformation temperatures, viscosity, electric resistivity, leach rate of ions and diffusion coefficients of 22Na, 35S, 90Sr and 137Cs have been measured. Glass structure by infrared and EPR spectroscopies has been investigated.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2543
Author(s):  
Ranieri Marinari ◽  
Paolo Favuzza ◽  
Davide Bernardi ◽  
Francesco Saverio Nitti ◽  
Ivan Di Piazza

A detailed study of lithium-related topics in the IFMIF-DONES facility is currently being promoted and supported within the EUROfusion action, paying attention to different pivotal aspects including lithium flow stability and the monitoring and extraction of impurities. The resistivity meter is a device able to monitor online non-metallic impurities (mainly nitrogen) in flowing lithium. It relies on the variation of the electric resistivity produced by dissolved anions: the higher the concentration of impurities in lithium, the higher the resistivity measured. The current configuration of the resistivity meter has shown different measuring issues during its operation. All these issues reduce the accuracy of the measurements performed with this instrument and introduce relevant noise affecting the resistance value. This paper proposes different upgrades, supported by CFD simulations, to optimize lithium flow conditions and to reduce measurement problems. Owing to these upgrades, a new design of the resistivity meter has been achieved, which is simpler and easier to manufacture.


Sign in / Sign up

Export Citation Format

Share Document