Directional Selection, Stabilizing Selection, and Random Drift

2019 ◽  
pp. 110-123
1989 ◽  
Vol 54 (1) ◽  
pp. 45-58 ◽  
Author(s):  
Peter D. Keightley ◽  
William G. Hill

SummaryA model of genetic variation of a quantitative character subject to the simultaneous effects of mutation, selection and drift is investigated. Predictions are obtained for the variance of the genetic variance among independent lines at equilibrium with stabilizing selection. These indicate that the coefficient of variation of the genetic variance among lines is relatively insensitive to the strength of stabilizing selection on the character. The effects on the genetic variance of a change of mode of selection from stabilizing to directional selection are investigated. This is intended to model directional selection of a character in a sample of individuals from a natural or long-established cage population. The pattern of change of variance from directional selection is strongly influenced by the strengths of selection at individual loci in relation to effective population size before and after the change of regime. Patterns of change of variance and selection responses from Monte Carlo simulation are compared to selection responses observed in experiments. These indicate that changes in variance with directional selection are not very different from those due to drift alone in the experiments, and do not necessarily give information on the presence of stabilizing selection or its strength.


2003 ◽  
Vol 81 (6) ◽  
pp. 971-978 ◽  
Author(s):  
Naoko Kato ◽  
Tadashi Miyashita

Crayfish have five pairs of abdominal limbs called pleopods. In males, the first and second pairs of pleopods are used for transferring spermatophores to the female during copulation. The remaining pleopods in males have no obvious function. Female crayfish use their pleopods to carry eggs. Accordingly, it is expected that the selection pressures that act on the pleopods differ between males and females. To test this hypothesis, we estimated modes of selection on pleopods in two species of crayfish (Procambarus clarkii and Pacifastacus trowbridgii) by comparing allometric relationships in functional and nonfunctional pleopods. Since pleopods are serially homologous traits, developmental constraints on these traits appear to be minimal. The lengths of the first male pleopods, used in copulation, showed lower allometric values and less dispersion around the regression line, suggesting that they have been under stabilizing selection. This likely occurs because the major selective force is the ability of males to copulate with females of various sizes. The pleopods of females showed higher allometric values than pleopods of males without an assigned function. This suggests that the pleopods of females have been under directional selection, most likely because they are longer and can therefore carry more eggs.


2019 ◽  
Author(s):  
Jobran Chebib ◽  
Frédéric Guillaume

AbstractBoth pleiotropic connectivity and mutational correlations can restrict the divergence of traits under directional selection, but it is unknown which is more important in trait evolution. In order to address this question, we create a model that permits within-population variation in both pleiotropic connectivity and mutational correlation, and compare their relative importance to trait evolution. Specifically, we developed an individual-based, stochastic model where mutations can affect whether a locus affects a trait and the extent of mutational correlations in a population. We find that traits can diverge whether there is evolution in pleiotropic connectivity or mutational correlation but when both can evolve then evolution in pleiotropic connectivity is more likely to allow for divergence to occur. The most common genotype found in this case is characterized by having one locus that maintains connectivity to all traits and another that loses connectivity to the traits under stabilizing selection (subfunctionalization). This genotype is favoured because it allows the subfunctionalized locus to accumulate greater effect size alleles, contributing to increasingly divergent trait values in the traits under directional selection without changing the trait values of the other traits (genetic modularization). These results provide evidence that partial subfunctionalization of pleiotropic loci may be a common mechanism of trait divergence under regimes of corridor selection.


Genetics ◽  
1990 ◽  
Vol 125 (1) ◽  
pp. 207-213 ◽  
Author(s):  
M Slatkin ◽  
S A Frank

Abstract The independence of two phenotypic characters affected by both pleiotropic and nonpleiotropic mutations is investigated using a generalization of M. Slatkin's stepwise mutation model of 1987. The model is used to determine whether predictions of either the multivariate normal model introduced in 1980 by R. Lande or the house-of-cards model introduced in 1985 by M. Turelli can be regarded as typical of models that are intermediate between them. We found that, under stabilizing selection, the variance of one character at equilibrium may depend on the strength of stabilizing selection on the other character (as in the house-of-cards model) or not (as in the multivariate normal model) depending on the types of mutations that can occur. Similarly, under directional selection, the genetic covariance between two characters may increase substantially (as in the house-of-cards model) or not (as in the multivariate normal model) depending on the kinds of mutations that are assumed to occur. Hence, even for the simple model we consider, neither the house-of-cards nor the multivariate normal model can be used to make predictions, making it unlikely that either could be used to draw general conclusions about more complex and realistic models.


2010 ◽  
Vol 8 (58) ◽  
pp. 720-739 ◽  
Author(s):  
Harold P. de Vladar ◽  
Nick H. Barton

By exploiting an analogy between population genetics and statistical mechanics, we study the evolution of a polygenic trait under stabilizing selection, mutation and genetic drift. This requires us to track only four macroscopic variables, instead of the distribution of all the allele frequencies that influence the trait. These macroscopic variables are the expectations of: the trait mean and its square, the genetic variance, and of a measure of heterozygosity, and are derived from a generating function that is in turn derived by maximizing an entropy measure. These four macroscopics are enough to accurately describe the dynamics of the trait mean and of its genetic variance (and in principle of any other quantity). Unlike previous approaches that were based on an infinite series of moments or cumulants, which had to be truncated arbitrarily, our calculations provide a well-defined approximation procedure. We apply the framework to abrupt and gradual changes in the optimum, as well as to changes in the strength of stabilizing selection. Our approximations are surprisingly accurate, even for systems with as few as five loci. We find that when the effects of drift are included, the expected genetic variance is hardly altered by directional selection, even though it fluctuates in any particular instance. We also find hysteresis, showing that even after averaging over the microscopic variables, the macroscopic trajectories retain a memory of the underlying genetic states.


1966 ◽  
Vol 8 (3) ◽  
pp. 261-267 ◽  
Author(s):  
Leigh Van Valen ◽  
Robin Weiss

In samples of sixteen populations of Rattus rattus from southern India, the oldest individuals have less variable molar widths than the younger ones. This is probably due to stabilizing selection by mortality. There is no detectable heterogeneity between sexes or teeth or among populations in this selection. Although there is no average difference between age classes in mean tooth width, the difference between age classes is heterogeneous among populations. This heterogeneity may reflect heterogeneity in directional selection or in direct environmental effects. The selection intensity on the variance is about 0·04.


Genetica ◽  
1991 ◽  
Vol 83 (3) ◽  
pp. 247-256
Author(s):  
A. G. Imasheva ◽  
L. A. Zhivotovsky ◽  
O. E. Lazebny

2013 ◽  
Vol 59 (5) ◽  
pp. 675-685 ◽  
Author(s):  
Richard I. Bailey ◽  
Fabrice Eroukhmanoff ◽  
Glenn-Peter Sætre

Abstract Recent genomic studies have highlighted the importance of hybridization and gene exchange in evolution. We ask what factors cause variation in the impact of hybridization, through adaptation in hybrids and the likelihood of hybrid speciation. During speciation, traits that diverge due to both divergent and stabilizing selection can contribute to the buildup of reproductive isolation. Divergent directional selection in parent taxa should lead to intermediate phenotypes in hybrids, whereas stabilizing selection can also produce extreme, transgressive phenotypes when hybridization occurs. By examining existing theory and empirical data, we discuss how these effects, combined with differences between modes of divergence in the chromosomal distribution of incompatibilities, affect adaptation and speciation in hybrid populations. The result is a clear and testable set of predictions that can be used to examine hybrid adaptation and speciation. Stabilizing selection in parents increases transgression in hybrids, increasing the possibility for novel adaptation. Divergent directional selection causes intermediate hybrid phenotypes and increases their ability to evolve along the direction of parental differentiation. Stabilizing selection biases incompatibilities towards autosomes, leading to reduced sexual correlations in trait values and reduced pleiotropy in hybrids, and hence increased freedom in the direction of evolution. Directional selection causes a bias towards sex-linked incompatibilities, with the opposite consequences. Divergence by directional selection leads to greater dominance effects than stabilizing selection, with major but variable impacts on hybrid evolution.


2019 ◽  
Author(s):  
Laura K. Hayward ◽  
Guy Sella

AbstractPolygenic adaptation in response to selection on quantitative traits is thought to be ubiquitous in humans and other species, yet this mode of adaptation remains poorly understood. We investigate the dynamics of this process, assuming that a sudden change in environment shifts the optimal value of a highly polygenic quantitative trait. We find that when the shift is not too large relative to the genetic variance in the trait and this variance arises from segregating loci with small to moderate effect sizes (defined in terms of the selection acting on them before the shift), the mean phenotype’s approach to the new optimum is well approximated by a rapid exponential process first described by Lande (1976). In contrast, when the shift is larger or large effect loci contribute substantially to genetic variance, the initially rapid approach is succeeded by a much slower one. In either case, the underlying changes to allele frequencies exhibit different behaviors short and long-term. Over the short term, strong directional selection on the trait introduces small differences between the frequencies of minor alleles whose effects are aligned with the shift in optimum versus those with effects in the opposite direction. The phenotypic effects of these differences are dominated by contributions from alleles with moderate and large effects, and cumulatively, these effects push the mean phenotype close to the new optimum. Over the longer term, weak directional selection on the trait can amplify the expected frequency differences between opposite alleles; however, since the mean phenotype is close to the new optimum, alleles are mainly affected by stabilizing selection on the trait. Consequently, the frequency differences between opposite alleles translate into small differences in their probabilities of fixation, and the short-term phenotypic contributions of large effect alleles are largely supplanted by contributions of fixed, moderate ones. This process takes on the order of ~4Ne generations (where Ne is the effective population size), after which the steady state architecture of genetic variation around the new optimum is restored.


2020 ◽  
Vol 11 ◽  
Author(s):  
Alwyn C. Go ◽  
Alberto Civetta

Genome-wide assays of expression between species and their hybrids have identified genes that become either over- or underexpressed relative to the parental species (i.e., transgressive). Transgressive expression in hybrids is of interest because it highlights possible changes in gene regulation linked to hybrid dysfunction. Previous studies in Drosophila that used long-diverged species pairs with complete or nearly complete isolation (i.e., full sterility and partial inviability of hybrids) and high-levels of genome misregulation have found correlations between expression and coding sequence divergence. The work highlighted the possible effects of directional selection driving sequence divergence and transgressive expression. Whether the same is true for taxa at early stages of divergence that have only achieved partial isolation remains untested. Here, we reanalyze previously published genome expression data and available genome sequence reads from a pair of partially isolated subspecies of Drosophila to compare expression and sequence divergence. We find a significant correlation in rates of expression and sequence evolution, but no support for directional selection driving transgressive expression in hybrids. We find that most transgressive genes in hybrids show no differential expression between parental subspecies and used SNP data to explore the role of stabilizing selection through compensatory mutations. We also examine possible misregulation through cascade effects that could be driven by interacting gene networks or co-option of off-target cis-regulatory elements.


Sign in / Sign up

Export Citation Format

Share Document