scholarly journals Development of the Cranfield University Bulldog flight test facility

2017 ◽  
Vol 121 (1238) ◽  
pp. 533-552 ◽  
Author(s):  
N.J. Lawson ◽  
R. Correia ◽  
S.W. James ◽  
J.E. Gautrey ◽  
G. Invers Rubio ◽  
...  

ABSTRACTCranfield University's National Flying Laboratory Centre (NFLC) has developed a Bulldog light aircraft into a flight test facility. The facility is being used to research advanced in-flight instrumentation including fibre optic pressure and strain sensors. During the development of the test bed, Computational Fluid Dynamics (CFD) has been used to assist the flight test design process, including the sensor requirements. This paper describes the development of the Bulldog flight test facility, including an overview of the design and certification process, the in-flight data taken using the installed fibre optic sensor systems and lessons learned from the development programme, including potential further applications of the sensors.

2016 ◽  
Vol 120 (1234) ◽  
pp. 1917-1931 ◽  
Author(s):  
J. Bakunowicz ◽  
R. Meyer

ABSTRACTFlight testing is both vital for collecting data for aeronautic research and at the same time fascinating for its contributors. Taking a glider as a versatile test bed example, this paper presents a transnational measurement campaign within the framework of a collaborative project funded by the European Commission. This project Advanced In-Flight Measurement Techniques 2 (AIM²) is a follow-up of Advanced In-Flight Measurement Techniques (AIM) and dedicated to developing and enhancing promising optical metrology for various flight test applications up to an industrial level.The Image Pattern Correlation Technique (IPCT) and infrared thermography (IRT) are two of these modern non-intrusive measurement methods that were further developed and applied to the glider test bed within the scope of AIM². Focusing on optical deformation measurements with IPCT the experimental setup, the flight testing and results are summarily discussed. Gliders are not commonly used flight test platforms, which is why this contribution concludes with some lessons learned in general and especially related to the presented application. The experience to be shared with the flight testing community addresses equipment preparation, data collection and processing as well as how to meet official requirements and perform test flight operations in a dense controlled airspace.


2007 ◽  
Vol 34 (3) ◽  
pp. 430-437 ◽  
Author(s):  
E Rivera ◽  
A A Mufti ◽  
D J Thomson

As the design and construction of civil structures continue to evolve, it is becoming imperative that these structures be monitored for their health. To meet this need, the discipline of civionics has emerged. It involves the application of electronics to civil structures and aims to assist engineers in realizing the full benefits of structural health monitoring (SHM). Therefore, the goal of the civionics specifications outlined in this work is to ensure that the installation and operation of fibre optic sensors are successful. This paper will discuss several lessons learned during the implementation of health monitoring systems for civil structures. The monitoring of these structures primarily motivated the writing of these specifications. Creating a standard procedure for SHM eliminated several ambiguities, such as fibre sensor specifications and the types of cables required. As a result, it is expected that these specifications will help ensure that the sensors will survive the installation process and eventually prove their value over years of structural health monitoring. The civionics fibre optic sensor specifications include the requirements for fibre sensors and their corresponding readout units. They also include specifications for the cables, conduits, junction boxes, termination, and environmental protection.Key words: civionics, structural health monitoring, fibre optic sensors, specifications.


1997 ◽  
Vol 6 (5) ◽  
pp. 096369359700600
Author(s):  
R. P. Kenny ◽  
E. Gutierrez ◽  
M. P. Whelan ◽  
A. C. Lucia

Fibre optic sensor systems have been developed for characterisation and monitoring of structural elements. The particular application area reported here is on testing of pultruded composite beams. Demodulation schemes for in-fibre Bragg grating strain sensors using either Acousto-Optic tuneable filters or passive techniques are described. It is found that the fibre optic sensor measurements correspond well with those of standard electrical gauges, and demonstrate their potential as on-line structural diagnostic devices.


Author(s):  
Hyeonsoo Yeo ◽  
Robert A. Ormiston

The UH-60A Airloads Workshop was a unique collaboration of aeromechanics experts from the U.S. Government, industry, and academia to address technical issues that hindered accurate rotor loads predictions. The Airloads Workshop leveraged the NASA/Army UH-60A Airloads flight test and NFAC wind tunnel test data. It functioned continuously for 17 years, from 2001 to 2018, and brought about one of the most important advancements in rotorcraft aeromechanics prediction capabilities by successfully demonstrating high-fidelity coupled computational fluid dynamics (CFD) and computational structural dynamics (CSD) analyses for both steady and maneuvering flight. The article is divided into two parts. Part I surveys the background of rotorcraft CFD/CSD development difficulties, the origins of the Airloads Workshop, and the rapid success achieved during the first phase that consisted of eight Workshops. Part II describes ongoing development during the subsequent two phases of the Airloads Workshop, the Ninth through the 13th, and the 14th through the 31st Workshops; the impact of the Airloads Workshop; and the lessons learned. Part I surveys the technical activities that led to a breakthrough for CFD/CSD coupling to successfully predict rotor blade airloads in trimmed steady-level flight conditions. This success illustrated the importance of collaboration among key experts with diverse backgrounds focused on a common objective to advance rotorcraft prediction methods.


1994 ◽  
Author(s):  
Alexander V. Churenkov ◽  
Maksim A. Skorobogatiy ◽  
A. D. Loiko

2012 ◽  
Author(s):  
Constanze Schilder ◽  
Nadine Kusche ◽  
Vivien G. Schukar ◽  
Wolfgang R. Habel
Keyword(s):  

Author(s):  
Toshiaki Sakurazawa ◽  
Takeo Oda ◽  
Satoshi Takami ◽  
Atsushi Okuto ◽  
Yasuhiro Kinoshita

This paper describes the development of the Dry Low Emission (DLE) combustor for L30A gas turbine. Kawasaki Heavy Industries, LTD (KHI) has been producing relatively small-size gas turbines (25kW to 30MW class). L30A gas turbine, which has a rated output of 30MW, achieved the thermal efficiency of more than 40%. Most continuous operation models use DLE combustion systems to reduce the harmful emissions and to meet the emission regulation or self-imposed restrictions. KHI’s DLE combustors consist of three burners, a diffusion pilot burner, a lean premix main burner, and supplemental burners. KHI’s proven DLE technologies are also adapted to the L30A combustor design. The development of L30 combustor is divided in four main steps. In the first step, Computational Fluid Dynamics (CFD) analyses were carried out to optimize the detail configuration of the combustor. In a second step, an experimental evaluation using single-can-combustor was conducted in-house intermediate-pressure test facility to evaluate the performances such as ignition, emissions, liner wall temperature, exhaust temperature distribution, and satisfactory results were obtained. In the third step, actual pressure and temperature rig tests were carried out at the Institute for Power Plant Technology, Steam and Gas Turbines (IKDG) of Aachen University, achieving NOx emission value of less than 15ppm (O2=15%). Finally, the L30A commercial validation engine was tested in an in-house test facility, NOx emission is achieved less than 15ppm (O2=15%) between 50% and 100% load operation point. L30A field validation engine have been operated from September 2012 at a chemical industries in Japan.


2013 ◽  
Author(s):  
Constanze Schilder ◽  
Harald Kohlhoff ◽  
Detlef Hofmann ◽  
Frank Basedau ◽  
Wolfgang R. Habel ◽  
...  

2016 ◽  
Vol 138 (11) ◽  
Author(s):  
Matthew Collins ◽  
Kam Chana ◽  
Thomas Povey

The high pressure (HP) rotor tip and over-tip casing are often life-limiting features in the turbine stages of current gas turbine engines. This is due to the high thermal load and high temperature cycling at both low and high frequencies. In the last few years, there have been numerous studies of turbine tip heat transfer. Comparatively fewer studies have considered the over-tip casing heat transfer. This is in part, no doubt, due to the more onerous test facility requirements to validate computational simulations. Because the casing potential field is dominated by the passing rotor, to perform representative over-tip measurements a rotating experiment is an essential requirement. This paper details the measurements taken on the Oxford turbine research facility (OTRF), an engine-scale rotating turbine facility which replicates engine-representative conditions of Mach number, Reynolds number, and gas-to-wall temperature ratio. High density arrays of miniature thin-film heat-flux gauges were used with a spatial resolution of 0.8 mm and temporal resolution of ∼120 kHz. The small size of the gauges, the high frequency response, and the improved processing methods allowed very detailed measurements of the heat transfer in this region. Time-resolved measurements of TAW and Nu are presented for the casing region (−30% to +125% CAX) and compared to other results in the literature. The results provide an almost unique data set for calibrating computational fluid dynamics (CFD) tools for heat transfer prediction in this highly unsteady environment dominated by the rotor over-tip flow.


Sign in / Sign up

Export Citation Format

Share Document