Numerical study of uneven wall-heating effect for a one side rib-roughened cooling channel subject to rotation

2018 ◽  
Vol 122 (1257) ◽  
pp. 1697-1710
Author(s):  
Z. Wang ◽  
R. Corral

ABSTRACTThis paper investigates the impact of the wall-heating conditions on the heat transfer performance of a rotating channel with one side smooth and one side roughened by 45° inclined ribs. Previous experimental and numerical studies for single-ribbed wall-heated channels showed that rotation has a significant negative impact on heat transfer performance. In order to investigate this uncommon behaviour, RANS simulations were conducted under three different wall-heating conditions in the present study: ribbed wall heated, all walls heated and adiabatic conditions. Numerical results show that the presence of uneven wall-heating conditions has a negligible impact on the stationary case, but it has a large influence on rotational cases, in both, the heat transfer and the flow field. The underlying reason is that in rotating cases, uneven heating results in different buoyancy effects on the trailing and leading walls of the channel that alter the main flow velocity profile. As a consequence, also secondary flows and heat transfer performance are affected.

Author(s):  
Feng Sun ◽  
G.-X. Wang

This paper presents a numerical study of turbulent flow and heat transfer in a bayonet tube under steady state. First, various turbulent models and wall treatment methods have been tested and validated against the experimental result from a turbulent air jet. The proper combination of turbulent model and wall treatment is then recommended for the turbulent flow within a bayonet tube. The study focuses on the heat transfer performance at the interface of working fluid and the outer tube wall under different Reynolds numbers. Various geometry parameters are considered in this work and the impact of geometry on the heat transfer performance is investigated. Results indicate that the heat transfer at the bottom of the bayonet tube is enhanced compared with that at the straight part. At low Re (< 8000), the maximum Nu occurs at the stagnation point, while the position of the maximum Nu moves away from the stagnant point as Re exceeds 8000. The results are believed to be helpful for the optimized design of a bayonet tube with fully turbulent flows.


2015 ◽  
Vol 26 (12) ◽  
pp. 1550140 ◽  
Author(s):  
Amin Ebrahimi ◽  
Ehsan Roohi

Flow patterns and heat transfer inside mini twisted oval tubes (TOTs) heated by constant-temperature walls are numerically investigated. Different configurations of tubes are simulated using water as the working fluid with temperature-dependent thermo-physical properties at Reynolds numbers ranging between 500 and 1100. After validating the numerical method with the published correlations and available experimental results, the performance of TOTs is compared to a smooth circular tube. The overall performance of TOTs is evaluated by investigating the thermal-hydraulic performance and the results are analyzed in terms of the field synergy principle and entropy generation. Enhanced heat transfer performance for TOTs is observed at the expense of a higher pressure drop. Additionally, the secondary flow generated by the tube-wall twist is concluded to play a critical role in the augmentation of convective heat transfer, and consequently, better heat transfer performance. It is also observed that the improvement of synergy between velocity and temperature gradient and lower irreversibility cause heat transfer enhancement for TOTs.


Author(s):  
G. Barigozzi ◽  
A. Perdichizzi ◽  
L. Abba ◽  
L. Pestelli

Abstract The present paper reports on an experimental investigation on the aerodynamic and heat transfer performance of different platform cooling schemes: two based on cylindrical and shaped holes and one featuring a slot located upstream of the leading edge plane simulating the combustor to stator interface gap. Tests were run on a 6-vane cascade operated at an isentropic cascade exit Mach number of 0.4 and a significant inlet turbulence intensity level of about 9%. The cooling schemes were first tested to quantify their impact on secondary flows and related losses for variable injection conditions. Heat transfer performance was then assessed through adiabatic film cooling effectiveness and heat transfer coefficient measurements. The Net Heat Flux Reduction parameter was then computed to critically assess the cooling schemes. When compared with the cylindrical hole scheme, shaped holes outperform for all tested injection rates, while the slot alone is able to thermally protect only the front of the passage. Discrete holes are required to cool the platform region along the whole pressure side and the suction side leading edge region.


Sign in / Sign up

Export Citation Format

Share Document