scholarly journals A strategy to represent impacts of subgrid-scale topography on snow evolution in the Canadian Land Surface Scheme

2017 ◽  
Vol 58 (75pt1) ◽  
pp. 1-10 ◽  
Author(s):  
Waqar Younas ◽  
Rachel W. Hay ◽  
Matt K. MacDonald ◽  
Siraj ul Islam ◽  
Stephen J. Déry

ABSTRACTThis sensitivity study applies the offline Canadian Land Surface Scheme (CLASS) version 3.6 to simulate snowpack evolution in idealized topography using observations at Likely, British Columbia, Canada over 1 July 2008 to 30 June 2009. A strategy for a subgrid-scale snow (SSS) parameterization is developed to incorporate two key features: ten elevation bands at 100 m intervals to capture air temperature lapse rates, and five slope angles on four aspects to resolve solar radiation impacts on the evolution of snow depth and SWE. Simulations reveal strong elevational dependencies of snow depth and SWE when adjusting temperatures using a moist adiabatic lapse rate with elevation, with 26% peak SWE differences between that at the average elevation versus the mean of the remainder of the elevation bands. Differences in peak SWE on north- and south-facing slopes increase from 3.0 mm at 10° slope to 17.9 mm at 50° slope. When applied to elevation, slope and aspect combinations derived from a high-resolution digital elevation model, elevation dominates the control of peak SWE values. Inclusion of the range of SSS effects into a regional climate model will improve snowpack and hydrological simulations of western North America's snow-dominated, mountainous watersheds.

2020 ◽  
Vol 21 (6) ◽  
pp. 1383-1404 ◽  
Author(s):  
M. Alves ◽  
D. F. Nadeau ◽  
B. Music ◽  
F. Anctil ◽  
A. Parajuli

AbstractThe Canadian Land Surface Scheme (CLASS) has been applied over the years in coupled and uncoupled (offline) modes at local, regional, and global scales using various forcing datasets. In this study, CLASS is applied at a local scale in the offline configuration to evaluate its performance when driven by the ERA5 reanalysis. Simulated surface energy fluxes, as well as several other water balance components, are investigated at four sites across the Canadian boreal biome. The results from CLASS driven by ERA5 (CLASS-RNL) are compared with available in situ measurements, as well as with results from CLASS driven by observations (CLASS-CTL). Additional simulations are conducted to evaluate the effects of biases in the ERA5 precipitation, where CLASS is forced by ERA5 data, but with ERA5 precipitation being replaced by observed precipitation (CLASS-RNL-ObsP). The results show that simulated surface variables in CLASS-RNL are in good agreement with observations as well as with those simulated in CLASS-CTL. The CLASS-RNL captures well the observed annual cycles of the surface energy and water fluxes, as well as the year-to-year variation of snow depth, soil temperature, and soil moisture. A strong correlation is found between the observed and CLASS-RNL simulated snow depth and soil temperature. Biases in the ERA5 precipitation did not affect the simulation of soil state variables, whereas the simulated surface heat and water fluxes, as well as the snow depth, were significantly affected. For instance, the simulated runoff in CLASS-RNL is much higher than in CLASS-RNL-ObsP and CLASS-CTL at the most humid sites due to significant positive bias in ERA5 precipitation.


2013 ◽  
Vol 6 (2) ◽  
pp. 3085-3135 ◽  
Author(s):  
C. Wilhelm ◽  
D. Rechid ◽  
D. Jacob

Abstract. The main objective of this study is the coupling of the regional climate model REMO to a 3rd generation land surface scheme and the evaluation of the new model version of REMO, called REMO with interactive MOsaic-based VEgetation: REMO-iMOVE. Attention is paid to the documentation of the technical aspects of the new model constituents and the coupling mechanism. We compare simulation results of REMO-iMOVE and of the reference version REMO2009, to investigate the sensitivity of the regional model to the new land surface scheme. An 11 yr climate model run (1995–2005), forced with ECMWF ERA-Interim lateral boundary conditions, over Europe in 0.44° resolution of both model versions was carried out, to represent present day European climate. The result of these experiments are compared to multiple temperature, precipitation, heat flux and leaf area index observation data, to determine the differences in the model versions. The new model version has further the ability to model net primary productivity for the given plant functional types. This new feature is thoroughly evaluated by literature values of net primary productivity of different plant species in European climatic regions. The new model version REMO-iMOVE is able to model the European climate in the same quality as the parent model version REMO2009 does. The differences in the results of the two model versions stem from the differences in the dynamics of vegetation cover and density and can be distinct in some regions, due to the influences of these parameters to the surface heat and moisture fluxes. The modeled inter-annual variability in the phenology as well as the net primary productivity lays in the range of observations and literature values for most European regions. This study also reveals the need for a more sophisticated soil moisture representation in the newly developed model version REMO-iMOVE to be able to treat the differences in plant functional types. This gets especially important if the model will be used in dynamic vegetation studies.


2014 ◽  
Vol 7 (3) ◽  
pp. 1093-1114 ◽  
Author(s):  
C. Wilhelm ◽  
D. Rechid ◽  
D. Jacob

Abstract. The main objective of this study is the coupling of the regional climate model REMO with a new land surface scheme including dynamic vegetation phenology, and the evaluation of the new model version called REMO with interactive MOsaic-based VEgetation: REMO-iMOVE. First, we focus on the documentation of the technical aspects of the new model constituents and the coupling mechanism. The representation of vegetation in iMOVE is based on plant functional types (PFTs). Their geographical distribution is prescribed to the model which can be derived from different land surface data sets. Here, the PFT distribution is derived from the GLOBCOVER 2000 data set which is available on 1 km × 1 km horizontal resolution. Plant physiological processes like photosynthesis, respiration and transpiration are incorporated into the model. The vegetation modules are fully coupled to atmosphere and soil. In this way, plant physiological activity is directly driven by atmospheric and soil conditions at the model time step (two minutes to some seconds). In turn, the vegetation processes and properties influence the exchange of substances, energy and momentum between land and atmosphere. With the new coupled regional model system, dynamic feedbacks between vegetation, soil and atmosphere are represented at regional to local scale. In the evaluation part, we compare simulation results of REMO-iMOVE and of the reference version REMO2009 to multiple observation data sets of temperature, precipitation, latent heat flux, leaf area index and net primary production, in order to investigate the sensitivity of the regional model to the new land surface scheme and to evaluate the performance of both model versions. Simulations for the regional model domain Europe on a horizontal resolution of 0.44° had been carried out for the time period 1995–2005, forced with ECMWF ERA-Interim reanalyses data as lateral boundary conditions. REMO-iMOVE is able to simulate the European climate with the same quality as the parent model REMO2009. Differences in near-surface climate parameters can be restricted to some regions and are mainly related to the new representation of vegetation phenology. The seasonal and interannual variations in growth and senescence of vegetation are captured by the model. The net primary productivity lies in the range of observed values for most European regions. This study reveals the need for implementing vertical soil water dynamics in order to differentiate the access of plants to water due to different rooting depths. This gets especially important if the model will be used in dynamic vegetation studies.


1997 ◽  
Vol 25 ◽  
pp. 46-50 ◽  
Author(s):  
Jeffrey S. Tilley ◽  
William L. Chapman ◽  
Wanli Wu

We have conducted tests of the Canadian Land Surface Scheme (CLASS V2.5) for Arctic tundra applications. Our tests emphasize sensitivities to initial conditions, external forcings and internal parameters, and focus on the Alaskan North Slope during the summer of 1992. Observational data from the National Science foundation (NSF), Arctic Systems Science (ARCSS), Land/Atmosphere/Ice Interactions (LAII) Flux Study is available to serve as forcing and validation for our simulations.Comparisons of the runs show strong sensitivities to the composition and depth of the soil layers, and we find that a minimum total soil depth of 5.0 m is needed to maintain permafrost. The response of the soil to diurnal variations in forcing is strong, while sensitivities to other internal parameters, as well as to precipitation, were relatively small. Some sensitivity to air temperatures and radiative fluxes, particularly the incoming shortwave flux, was also present. Significant sensitivity to the specification of the initial water and ice contents of the soil was found, while the sensitivity to initial soil temperature was somewhat less.


2019 ◽  
pp. 93-105
Author(s):  
Matthew G. Letts ◽  
Nigel T. Roulet ◽  
Neil T. Comer ◽  
Michael R. Skarupa ◽  
Diana L. Verseghy

2019 ◽  
Vol 58 (4) ◽  
pp. 831-852 ◽  
Author(s):  
Yiling Huo ◽  
W. Richard Peltier

AbstractThe complex orography of South Asia, including both the Himalayas and the Tibetan Plateau, renders the regional climate complex. How this climate, especially the monsoon circulations, will respond to the global warming process is important given the large population of the region. In a first step toward a contribution to the understanding of the expected impacts, a series of dynamically downscaled instrumental-era climate simulations for the Indian subcontinent are described and will serve as a basis for comparison against global warming simulations. Global simulations based upon the Community Earth System Model (CESM) are employed to drive a dynamical downscaling pipeline in which the Weather Research and Forecasting (WRF) Model is employed as regional climate model, in a nested configuration with two domains at 30- and 10-km resolution, respectively. The entire ensemble was integrated for 15 years (1980–94), with the global model representing a complete integration from the onset of Northern Hemisphere industrialization. Compared to CESM, WRF significantly improves the representation of orographic precipitation. Precipitation extremes are also characterized using extreme value analysis. To investigate the sensitivity of the South Asian summer monsoon simulation to different parameterization schemes, a small physics ensemble is employed. The Noah multiphysics (Noah-MP) land surface scheme reduces the summer warm bias compared to the Noah land surface scheme. Compared with the Kain–Fritsch cumulus scheme, the Grell-3 scheme produces an increased moisture bias at the first western rain barrier, whereas the Tiedtke scheme produces less precipitation over the subcontinent than observed. Otherwise the improvement of fit to the observations derived from applying the downscaling methodology is highly significant.


2010 ◽  
Vol 23 (7) ◽  
pp. 1854-1873 ◽  
Author(s):  
E-S. Im ◽  
E. Coppola ◽  
F. Giorgi ◽  
X. Bi

Abstract A mosaic-type parameterization of subgrid-scale topography and land use (SubBATS) is applied for a high-resolution regional climate simulation over the Alpine region with a regional climate model (RegCM3). The model coarse-gridcell size in the control simulation is 15 km while the subgridcell size is 3 km. The parameterization requires disaggregation of atmospheric variables from the coarse grid to the subgrid and aggregation of surface fluxes from the subgrid to the coarse grid. Two 10-yr simulations (1983–92) are intercompared, one without (CONT) and one with (SUB) the subgrid scheme. The authors first validate the CONT simulation, showing that it produces good quality temperature and precipitation statistics, showing in particular a good performance compared to previous runs of this region. The subgrid scheme produces much finer detail of temperature and snow distribution following the topographic disaggregation. It also tends to form and melt snow more accurately in response to the heterogeneous characteristics of topography. In particular, validation against station observations shows that the SUB simulation improves the model simulation of the surface hydrologic cycle, in particular snow and runoff, especially at high-elevation sites. Finally, two experiments explore the model sensitivity to different subgrid disaggregation assumptions, namely, the temperature lapse rate and an empirical elevation-based disaggregation of precipitation.


Sign in / Sign up

Export Citation Format

Share Document