scholarly journals Formation of sea ice ponds from ice-shelf runoff, adjacent to the McMurdo Ice Shelf, Antarctica

2020 ◽  
Vol 61 (82) ◽  
pp. 73-77 ◽  
Author(s):  
Grant J. Macdonald ◽  
Predrag Popović ◽  
David P. Mayer

AbstractPonds that form on sea ice can cause it to thin or break-up, which can promote calving from an adjacent ice shelf. Studies of sea ice ponds have predominantly focused on Arctic ponds formed by in situ melting/ponding. Our study documents another mechanism for the formation of sea ice ponds. Using Landsat 8 and Sentinel-2 images from the 2015–16 to 2018–19 austral summers, we analyze the evolution of sea ice ponds that form adjacent to the McMurdo Ice Shelf, Antarctica. We find that each summer, meltwater flows from the ice shelf onto the sea ice and forms large (up to 9 km2) ponds. These ponds decrease the sea ice's albedo, thinning it. We suggest the added mass of runoff causes the ice to flex, potentially promoting sea-ice instability by the ice-shelf front. As surface melting on ice shelves increases, we suggest that ice-shelf surface hydrology will have a greater effect on sea-ice stability.

2020 ◽  
Vol 12 (1) ◽  
pp. 134 ◽  
Author(s):  
Mahsa Moussavi ◽  
Allen Pope ◽  
Anna Halberstadt ◽  
Luke Trusel ◽  
Leanne Cioffi ◽  
...  

Melt and supraglacial lakes are precursors to ice shelf collapse and subsequent accelerated ice sheet mass loss. We used data from the Landsat 8 and Sentinel-2 satellites to develop a threshold-based method for detection of lakes found on the Antarctic ice shelves, calculate their depths and thus their volumes. To achieve this, we focus on four key areas: the Amery, Roi Baudouin, Nivlisen, and Riiser-Larsen ice shelves, which are all characterized by extensive surface meltwater features. To validate our products, we compare our results against those obtained by an independent method based on a supervised classification scheme (e.g., Random Forest algorithm). Additional verification is provided by manual inspection of results for nearly 1000 Landsat 8 and Sentinel-2 images. Our dual-sensor approach will enable constructing high-resolution time series of lake volumes. Therefore, to ensure interoperability between the two datasets, we evaluate depths from contemporaneous Landsat 8 and Sentinel-2 image pairs. Our assessments point to a high degree of correspondence, producing an average R2 value of 0.85, no bias, and an average RMSE of 0.2 m. We demonstrate our method’s ability to characterize lake evolution by presenting first evidence of drainage events outside of the Antarctic Peninsula on the Amery Ice shelf. The methods presented here pave the way to upscaling throughout the Landsat 8 and Sentinel-2 observational record across Antarctica to produce a first-ever continental dataset of supraglacial lake volumes. Such a dataset will improve our understanding of the influence of surface hydrology on ice shelf stability, and thus, future projections of Antarctica’s contribution to sea level rise.


2020 ◽  
Author(s):  
Frazer Christie ◽  
Toby Benham ◽  
Julian Dowdeswell

<p>The Antarctic Peninsula is one of the most rapidly warming regions on Earth. There, the recent destabilization of the Larsen A and B ice shelves has been directly attributed to this warming, in concert with anomalous changes in ocean circulation. Having rapidly accelerated and retreated following the demise of Larsen A and B, the inland glaciers once feeding these ice shelves now form a significant proportion of Antarctica’s total contribution to global sea-level rise, and have become an exemplar for the fate of the wider Antarctic Ice Sheet under a changing climate. Together with other indicators of glaciological instability observable from satellites, abrupt pre-collapse changes in ice shelf terminus position are believed to have presaged the imminent disintegration of Larsen A and B, which necessitates the need for routine, close observation of this sector in order to accurately forecast the future stability of the Antarctic Peninsula Ice Sheet. To date, however, detailed records of ice terminus position along this region of Antarctica only span the observational period c.1950 to 2008, despite several significant changes to the coastline over the last decade, including the calving of giant iceberg A-68a from Larsen C Ice Shelf in 2017.</p><p>Here, we present high-resolution, annual records of ice terminus change along the entire western Weddell Sea Sector, extending southwards from the former Larsen A Ice Shelf on the eastern Antarctic Peninsula to the periphery of Filchner Ice Shelf. Terminus positions were recovered primarily from Sentinel-1a/b, TerraSAR-X and ALOS-PALSAR SAR imagery acquired over the period 2009-2019, and were supplemented with Sentinel-2a/b, Landsat 7 ETM+ and Landsat 8 OLI optical imagery across regions of complex terrain.</p><p>Confounding Antarctic Ice Sheet-wide trends of increased glacial recession and mass loss over the long-term satellite era, we detect glaciological advance along 83% of the ice shelves fringing the eastern Antarctic Peninsula between 2009 and 2019. With the exception of SCAR Inlet, where the advance of its terminus position is attributable to long-lasting ice dynamical processes following the disintegration of Larsen B, this phenomenon lies in close agreement with recent observations of unchanged or arrested rates of ice flow and thinning along the coastline. Global climate reanalysis and satellite passive-microwave records reveal that this spatially homogenous advance can be attributed to an enhanced buttressing effect imparted on the eastern Antarctic Peninsula’s ice shelves, governed primarily by regional-scale increases in the delivery and concentration of sea ice proximal to the coastline.</p>


2015 ◽  
Vol 56 (69) ◽  
pp. 137-146 ◽  
Author(s):  
Priska A. Hunkeler ◽  
Stefan Hendricks ◽  
Mario Hoppmann ◽  
Stephan Paul ◽  
Rüdiger Gerdes

AbstractIce-platelet clusters modify the heat and mass balance of sea ice near Antarctic ice shelves and provide a unique habitat for ice-associated organisms. The amount and distribution of these ice crystals below the solid sea ice provide insight into melt rates and circulation regimes in the ice-shelf cavities, which are difficult to observe directly. However, little is known about the circum-Antarctic volume of the sub-sea-ice platelet layer, because observations have mostly been limited to point measurements. In this study, we present a new application of multi-frequency electromagnetic (EM) induction sounding to quantify platelet-layer properties. Combining in situ data with the theoretical response yields a bulk platelet-layer conductivity of 1154 ± 271 mS m–1 and ice-volume fractions of 0.29-0.43. Calibration routines and uncertainties are discussed in detail to facilitate future studies. Our results suggest that multi-frequency EM induction sounding is a promising method to efficiently map platelet-layer volume on a larger scale than has previously been feasible.


2020 ◽  
Author(s):  
Alexandra Boghosian ◽  
Lincoln Pitcher ◽  
Laurence Smith ◽  
Robin Bell

<p>In a warming world, increased meltwater will form on Antarctica’s ice shelves. The fate of this meltwater will be critical to future ice-shelf and ice-sheet stability. Two main observations define the current theoretical framework for understanding the influence of surface hydrology on ice-shelf stability. The first is the collapse West Antarctica’s Larsen B Ice Shelf that was triggered by the formation of thousands of surface ponds atop the ice shelf. The second is the observation of a waterfall on the Nansen Ice Shelf, in East Antarctica, that is hypothesized to protect the ice shelf from hydrofracture by removing meltwater from the ice-shelf surface.</p><p>We present a third process that couples ice-shelf hydrology to atmospheric and ocean forcing: the development of an ice-shelf estuary on the Petermann Ice Shelf in northwest Greenland.  High-resolution imagery and digital elevation models (DEMs) shows that channelized surface meltwater on the Petermann Ice Shelf in northwest Greenland incises into underlying ice to form an estuary that propagates fractures along the ice shelf. The estuary at the front of the Petermann Ice Shelf is indicated by the convergence of sea ice at the river mouth, the upstream transport of sea ice in the channel as far as 460 m from the calving front, and the persistence of water in the channel following the end of seasonal surface melt. Between 2013 and 2018, the estuarine reach of the river tripled in width and a 1.5 km longitudinal crack propagated along the bottom of the channel. The Petermann Ice Shelf Estuary forms on top of a basal channel, where basal melting has led to ice-shelf thinning, and the creation of the linear surface depression in which the estuary forms.</p><p>The Petermann Estuary may be the first of several ice-shelf estuaries to develop in a warming climate. Widespread surface melting on ice shelves in Greenland and Antarctica increases the urgency to determine the influence of surface hydrology on ice-shelf stability. We hypothesize that surface rivers may initially buffer ice shelves from collapse by terminating in waterfalls and preventing the formation of damaging lakes. However, with increased meltwater transport across ice shelves, channels can incise to sea level and establish estuaries. Once an estuary is established, estuarine weakening can lead to fracture propagation and enhanced calving, destabilizing ice-shelves, and increased ice-sheet mass loss.</p>


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Masahiro Minowa ◽  
Shin Sugiyama ◽  
Masato Ito ◽  
Shiori Yamane ◽  
Shigeru Aoki

AbstractBasal melting of ice shelves is considered to be the principal driver of recent ice mass loss in Antarctica. Nevertheless, in-situ oceanic data covering the extensive areas of a subshelf cavity are sparse. Here we show comprehensive structures of temperature, salinity and current measured in January 2018 through four boreholes drilled at a ~3-km-long ice shelf of Langhovde Glacier in East Antarctica. The measurements were performed in 302–12 m-thick ocean cavity beneath 234–412 m-thick ice shelf. The data indicate that Modified Warm Deep Water is transported into the grounding zone beneath a stratified buoyant plume. Water at the ice-ocean interface was warmer than the in-situ freezing point by 0.65–0.95°C, leading to a mean basal melt rate estimate of 1.42 m a−1. Our measurements indicate the existence of a density-driven water circulation in the cavity beneath the ice shelf of Langhovde Glacier, similar to that proposed for warm-ocean cavities of larger Antarctic ice shelves.


2020 ◽  
Author(s):  
Celia A. Baumhoer ◽  
Andreas J. Dietz ◽  
Christof Kneisel ◽  
Heiko Paeth ◽  
Claudia Kuenzer

Abstract. The safety band of Antarctica consisting of floating glacier tongues and ice shelves buttresses ice discharge of the Antarctic Ice Sheet. Recent disintegration events of ice shelves and glacier retreat indicate a weakening of this important safety band. Predicting calving front retreat is a real challenge due to complex ice dynamics in a data-scarce environment being unique for each ice shelf and glacier. We explore to what extent easy to access remote sensing and modelling data can help to define environmental conditions leading to calving front retreat. For the first time, we present a circum-Antarctic record of glacier and ice shelf front retreat over the last two decades in combination with environmental variables such as air temperature, sea ice days, snowmelt, sea surface temperature and wind direction. We find that the Antarctic ice sheet area shrank 29,618 ± 29 km2 in extent between 1997–2008 and gained an area of 7,108 ± 144.4 km2 between 2009 and 2018. Retreat concentrated along the Antarctic Peninsula and West Antarctica including the biggest ice shelves Ross and Ronne. Glacier and ice shelf retreat comes along with one or several changes in environmental variables. Decreasing sea ice days, intense snow melt, weakening easterlies and relative changes in sea surface temperature were identified as enabling factors for retreat. In contrast, relative increases in air temperature did not correlate with calving front retreat. To better understand drivers of glacier and ice shelf retreat it is of high importance to analyse the magnitude of basal melt through the intrusion of warm Circumpolar Deep Water (CDW) driven by strengthening westerlies and to further assess surface hydrology processes such as meltwater ponding, runoff and lake drainage.


2019 ◽  
Vol 11 (15) ◽  
pp. 1744 ◽  
Author(s):  
Daniel Maciel ◽  
Evlyn Novo ◽  
Lino Sander de Carvalho ◽  
Cláudio Barbosa ◽  
Rogério Flores Júnior ◽  
...  

Remote sensing imagery are fundamental to increasing the knowledge about sediment dynamics in the middle-lower Amazon floodplains. Moreover, they can help to understand both how climate change and how land use and land cover changes impact the sediment exchange between the Amazon River and floodplain lakes in this important and complex ecosystem. This study investigates the suitability of Landsat-8 and Sentinel-2 spectral characteristics in retrieving total (TSS) and inorganic (TSI) suspended sediments on a set of Amazon floodplain lakes in the middle-lower Amazon basin using in situ Remote Sensing Reflectance (Rrs) measurements to simulate Landsat 8/OLI (Operational Land Imager) and Sentinel 2/MSI (Multispectral Instrument) bands and to calibrate/validate several TSS and TSI empirical algorithms. The calibration was based on the Monte Carlo Simulation carried out for the following datasets: (1) All-Dataset, consisting of all the data acquired during four field campaigns at five lakes spread over the lower Amazon floodplain (n = 94); (2) Campaign-Dataset including samples acquired in a specific hydrograph phase (season) in all lakes. As sample size varied from one season to the other, n varied from 18 to 31; (3) Lake-Dataset including samples acquired in all seasons at a given lake with n also varying from 17 to 67 for each lake. The calibrated models were, then, applied to OLI and MSI scenes acquired in August 2017. The performance of three atmospheric correction algorithms was also assessed for both OLI (6S, ACOLITE, and L8SR) and MSI (6S, ACOLITE, and Sen2Cor) images. The impact of glint correction on atmosphere-corrected image performance was assessed against in situ glint-corrected Rrs measurements. After glint correction, the L8SR and 6S atmospheric correction performed better with the OLI and MSI sensors, respectively (Mean Absolute Percentage Error (MAPE) = 16.68% and 14.38%) considering the entire set of bands. However, for a given single band, different methods have different performances. The validated TSI and TSS satellite estimates showed that both in situ TSI and TSS algorithms provided reliable estimates, having the best results for the green OLI band (561 nm) and MSI red-edge band (705 nm) (MAPE < 21%). Moreover, the findings indicate that the OLI and MSI models provided similar errors, which support the use of both sensors as a virtual constellation for the TSS and TSI estimate over an Amazon floodplain. These results demonstrate the applicability of the calibration/validation techniques developed for the empirical modeling of suspended sediments in lower Amazon floodplain lakes using medium-resolution sensors.


1979 ◽  
Vol 24 (90) ◽  
pp. 259-271 ◽  
Author(s):  
G. De Q. Robin

AbstractIce shelves may develop either by continued thickening of sea ice that is held fast to the shore, or by the seaward extension of inland ice. For both processes, as well as for an understanding of ablation and of accumulation at the bottom surface of ice shelves, we need to understand melting and freezing processes in relation to salinity, temperature, and pressure. Consideration of these factors shows that basal melting beneath the thicker parts of ice shelves is much greater than is generally appreciated. This could be sufficient to bring the estimated mass balance of Antarctica into approximate equilibrium. It appears that most Antarctic ice shelves are dependent on the supply of inland ice for their continued existence. However the thick layer of sea ice beneath the Amery Ice Shelf is readily explained in terms of sub-ice water circulation.Transport of heat and mass by water motion beneath ice shelves has the potential to change ice thicknesses by similar amounts to that caused by internal deformation of the ice shelf. Bottom freezing due to thermal conduction throughout the ice shelf is of minor importance.While attention is drawn to the basic equations for flow of ice shelves, it is pointed out that they have yet to be applied satisfactorily to the problem of iceberg calving. This appears from field observations to be due primarily to creep failure of spreading ice shelves, possibly aided by impact from floating icebergs. Recent observations show the effectiveness and likely quantitative importance of this “big bang” theory of iceberg formation in Antarctica.A brief discussion of the effects of climatic change on the disintegration of ice shelves is presented.


2020 ◽  
Vol 12 (8) ◽  
pp. 1327 ◽  
Author(s):  
Anna Ruth W. Halberstadt ◽  
Colin J. Gleason ◽  
Mahsa S. Moussavi ◽  
Allen Pope ◽  
Luke D. Trusel ◽  
...  

Surface meltwater generated on ice shelves fringing the Antarctic Ice Sheet can drive ice-shelf collapse, leading to ice sheet mass loss and contributing to global sea level rise. A quantitative assessment of supraglacial lake evolution is required to understand the influence of Antarctic surface meltwater on ice-sheet and ice-shelf stability. Cloud computing platforms have made the required remote sensing analysis computationally trivial, yet a careful evaluation of image processing techniques for pan-Antarctic lake mapping has yet to be performed. This work paves the way for automating lake identification at a continental scale throughout the satellite observational record via a thorough methodological analysis. We deploy a suite of different trained supervised classifiers to map and quantify supraglacial lake areas from multispectral Landsat-8 scenes, using training data generated via manual interpretation of the results from k-means clustering. Best results are obtained using training datasets that comprise spectrally diverse unsupervised clusters from multiple regions and that include rock and cloud shadow classes. We successfully apply our trained supervised classifiers across two ice shelves with different supraglacial lake characteristics above a threshold sun elevation of 20°, achieving classification accuracies of over 90% when compared to manually generated validation datasets. The application of our trained classifiers produces a seasonal pattern of lake evolution. Cloud shadowed areas hinder large-scale application of our classifiers, as in previous work. Our results show that caution is required before deploying ‘off the shelf’ algorithms for lake mapping in Antarctica, and suggest that careful scrutiny of training data and desired output classes is essential for accurate results. Our supervised classification technique provides an alternative and independent method of lake identification to inform the development of a continent-wide supraglacial lake mapping product.


GEOMATICA ◽  
2020 ◽  
Vol 74 (2) ◽  
pp. 46-64
Author(s):  
Ryan Ahola ◽  
René Chénier ◽  
Mesha Sagram ◽  
Bradley Horner

Canada’s coastline presents challenges for charting. Within Arctic regions, in situ surveying presents risks to surveyors, is time consuming and costly. To better meet its mandate, the Canadian Hydrographic Service (CHS) has been investigating the potential of remote sensing to complement traditional charting techniques. Much of this work has focused on evaluating the effectiveness of empirical satellite derived bathymetry (SDB) techniques within the Canadian context. With greater knowledge of applying SDB techniques within Canadian waters, CHS is now interested in understanding how characteristics of optical sensors can impact SDB results. For example, how does the availability of different optical bands improve or hinder SDB estimates? What is the impact of spatial resolution on SDB accuracy? Do commercial satellites offer advantages over freely available data? Through application of a multiple band modelling technique to WorldView-2, Pléiades, PlanetScope, SPOT, Sentinel-2, and Landsat-8 imagery obtained over Cambridge Bay, Nunavut, this paper provides insight into these questions via comparisons with in situ survey data. Result highlights in the context of these questions include the following: Similarities between sensors: Overall linear error at 90% (LE90) results for each sensor ranged from 0.88 to 1.91 m relative to in situ depths, indicating consistency in the accuracy of SDB estimates from the examined satellites. Most estimates achieved Category of Zone of Confidence level C accuracy, the suggested minimum survey accuracy level for incorporating SDB information into navigational charts. SDB coverage: Between sensors, differences in the area of the sea floor that could be measured by SDB were apparent, as were differences in the ability of each sensor to properly represent spatial bathymetry characteristics. Sensor importance: Though relationships between SDB accuracy and sensor resolution were found, significant advantages or disadvantages for particular sensors were not identified, suggesting that other factors may play a more important role for SDB image selection (e.g., sea floor visibility, sediments, waves). Findings from this work will help inform SBD planning activities for hydrographic offices and SDB researchers alike.


Sign in / Sign up

Export Citation Format

Share Document