scholarly journals The political logics of clean energy transitions

2018 ◽  
Vol 20 (4) ◽  
pp. 492-522 ◽  
Author(s):  
Hanna Breetz ◽  
Matto Mildenberger ◽  
Leah Stokes

AbstractTechnology costs and deployment rates, represented in experience curves, are typically seen as the main factors in the global clean energy transition from fossil fuels towards low-carbon energy sources. We argue that politics is the hidden dimension of technology experience curves, as it affects both costs and deployment. We draw from empirical analyses of diverse North American and European cases to describe patterns of political conflict surrounding clean energy adoption across a variety of technologies. Our analysis highlights that different political logics shape costs and deployment at different stages along the experience curve. The political institutions and conditions that nurture new technologies into economic winners are not always the same conditions that let incumbent technologies become economic losers. Thus, as the scale of technology adoption moves from niches towards systems, new political coalitions are necessary to push complementary system-wide technology. Since the cost curve is integrated globally, different countries can contribute to different steps in the transition as a function of their individual comparative political advantages.

Author(s):  
Muntasir Murshed ◽  
Zahoor Ahmed ◽  
Md Shabbir Alam ◽  
Haider Mahmood ◽  
Abdul Rehman ◽  
...  

Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1787
Author(s):  
Pilar Gargallo ◽  
Luis Lample ◽  
Jesús A. Miguel ◽  
Manuel Salvador

This paper analyzes the co-movements of prices of fossil fuels, energy stock markets and EU allowances. This analysis is conducted in order to identify the spillover effect of volatility and correlation among these financial markets, and to provide a scientific basis that shows the interest of incorporating sustainable assets in the design of minimum risk strategies of investment. To achieve this goal, we have used a Vector Autoregressive-Dynamic Conditional Correlation-Generalized Autoregressive Conditional Heteroscedasticity (VAR-DCC-GARCH) model that also incorporates a stock index of industrial companies as a leading indicator of the level of economic activity. In addition, the paper conducts an impulse response analysis to determine how unexpected shocks to prices are propagated along time, and, in particular, how they affect prices of the others, both in mean, variance and correlation. Therefore, the results of this one- and two-dimensional analysis allow for the study of short and long run dynamics of the relationship among those prices, thus, providing greater meaning and information for investors, which has implications for building their portfolios. The analyzed period was from January 2010 to February 2021, so that the data include half of phase II, full phase III and the onset of phase IV of the EU ETS, as well as the COVID-19 outbreak in the European context. We also analyzed whether the EUA price impulses the demand of clean energy stocks, which has important implications for the objective of triggering the investment in clean energy. Our results show the transmission mechanism of all of those prices, which are relevant not only for investors but also for policymakers to construct an early-warning system, revealing the most important transmission channels. Moreover, from an investment viewpoint, we observe a decline in dirty energies and a rise in the clean energy market, which might be an indication of the progress towards the energy transition to renewables sources within a circular economy perspective. Therefore, this shows that the EU ETS is achieving its goals, and that clean energy companies, aligned with their role towards socially responsible initiatives, are also gaining acceptance in terms of investments, which would be beneficial for the environment.


2019 ◽  
Vol 12 (5) ◽  
pp. 156-171
Author(s):  
A. V. Zimakov

Clean energy transition is one of major transformation processes in the EU. There are different approaches among EU countries to decarbonization of their energy systems. The article deals with clean energy transition in France with the emphasis on power generation. While this transformation process is in line with similar developments in the EU, the Franch case has its distinct nature due to nuclear power domination in electricity production there. It represents a challenge for the current model as the transition is linked to a sharp drop of nuclear share in the power mix. It is important to understand the trajectory of further clean energy transition in France and its ultimate model. The article reviews the historical roots of the current model (which stems from Messmer plan of the 1970-es) and its development over years, as well as assesses its drawbacks and merits in order to outline possible future prospects. The conclusion is that the desired reduction of nuclear energy is linked not solely to greening process but has a complex of reasons, the ageing of nuclear reactors being one of them. Nuclear power remains an important low-carbon technology allowing France to achieve carbon neutrality by 2050. A desired future energy model in France can be understood based on the analysis of new legislation and government action plans. The targeted model is expected to balance of nuclear and green energy in the generation mix in 50% to 40% proportion by 2035, with the rest left to gas power generation. Being pragmatic, French government aims at partial nuclear reactors shut down provided that this will not lead to the rise of GHG emissions, energy market distortions, or electricity price hikes. The balanced French model is believed to be a softer and socially comfortable option of low-carbon model.


2021 ◽  
Vol 11 (2) ◽  
pp. 432-440
Author(s):  
Victoria R. Nalule ◽  
Xiaoyi (Shawn) Mu

Access to modern energy such as electricity is key in the economic development of any country, and yet over 600 million people remain with no access to electricity in developing countries. It is true that both renewable energy and fossil fuels are key in the achievement of the United Nations Sustainable Development (UN SDG) Goal 7 and Goal 1 on energy access and poverty eradication respectively. However, the current global efforts to transition to a low carbon economy, and tackle climate change as stipulated in the SDG 13 and the 2015 Paris Agreement, have created a lot of tension on fossil fuel developments in recent years.This commentary article is presented as a question and answer session aimed at addressing the misconceptions surrounding the achievement of SDG 7 and SDG 13 in this energy transition era. The paper is of interest to oil producing countries. The article follows the various questions raised by policymakers during an online seminar delivered by both the authors entitled, ‘Fossil Fuels in the Energy Transition Era’.


2021 ◽  
Author(s):  
Sam Jones ◽  
Adam Joyce ◽  
Nikhil Balasubramanian

Abstract Objectives/Scope There are many different views on the Energy Transition. What is agreed is that to achieve current climate change targets, the journey to deep decarbonisation must start now. Scope 3 emissions are clearly the major contributor to total emissions and must be actively reduced. However, if Oil and Gas extraction is to be continued, then operators must understand, measure, and reduce Scope 1 and 2 emissions. This paper examines the constituent parts of typical Scope 1 emissions for O&G assets and discusses a credible pathway and initial steps towards decarbonisation of operations. Methods, Procedures, Process Emissions from typical assets are investigated: data is examined to determine the overall and individual contributions of Scope 1 emissions. A three tiered approach to emissions savings is presented: – Reduce overall energy usage – Seek to Remove environmental losses – Replace energy supply with low carbon alternatives A simple method, used to assess carbon emissions, based on an abatement of carbon from a cost per CO2 tonne averted basis is described. This method, Marginal Abatement Cost Curve (MACC), is based solely on cost efficiency. Other criteria such as safety, weight, footprint and reliability are not considered. Credible pathway for reduction of Scope 1 emissions is presented. Taking appropriate actions as described in the pathway, contributors are eliminated in a strategic order, allowing operators to contribute to deep decarbonisation. Results, Observations, Conclusions A typical offshore installation was modelled with a number of carbon abatement measures implemented. Results are presented as cost effective or non-cost-effective CO2 measures together with the residual CO2 emissions. Based on the data presented, many of the replace measures have a higher cost per tonne of CO2 abated than reduce and remove measure. These findings indicate that additional technological advancement may be needed to make alternative power solutions commercially viable. It also indicates that several CO2 abatement measures are cost effective today. The pathway proposes actions to implement carbon savings for offshore operators, it differentiates actions which can be taken today and those which require further technological advancement before they become commercially viable. The intent of this pathway is to demonstrate that the energy transition is not solely the preserve of the largest operators and every company can take positive steps towards supporting decarbonisation. Novel/Additive Information The world needs security of energy supply. Hydrocarbons are still integral; however, oil and gas operators must contribute to carbon reduction for society to meet the energy transition challenges. As government and societal appetite for decarbonisation heightens, demands are growing for traditional hydrocarbon assets to reduce their carbon footprint if they are to remain part of the energy mix. Society and therefore regulators will demand that more is done to address emissions during this transitional phase, consequently necessitating that direct emissions are reduced as much as possible. The pathway is accessible to all today, we need not wait for novel technologies to act.


Author(s):  
Joseph Romm

This chapter will focus on the clean energy revolution and the technologies most widely discussed for a transition to a low carbon economy. It will explore the scale of the energy transition needed to explain why some energy technologies are considered likely to be major...


Author(s):  
Kathleen Araújo

The discovery of oil in Pennsylvania in 1859 was a relatively inconspicuous precursor to what would become an epic shift into the modern age of energy. At the time, the search for “rock oil” was driven by a perception that lighting fuel was running out. Advances in petrochemical refining and internal combustion engines had yet to occur, and oil was more expensive than coal. In less than 100 years, oil gained worldwide prominence as an energy source and traded commodity. Along similar lines, electricity in the early 1900s powered less than 10% of the homes in the United States. Yet, in under a half a century, billions of homes around the world were equipped to utilize the refined form of energy. Estimates indicate that roughly 85% of the world’s population had access to electricity in 2014 (World Bank, n.d.b). For both petroleum and electricity, significant changes in energy use and associated technologies were closely linked to evolutions in infrastructure, institutions, investment, and practices. Today, countless decision-makers are focusing on transforming energy systems from fossil fuels to low carbon energy which is widely deemed to be a cleaner, more sustainable form of energy. As of 2016, 176 countries have renewable energy targets in place, compared to 43 in 2005 (Renewable Energy Policy Network for the 21st Century [REN21], 2017). Many jurisdictions are also setting increasingly ambitious targets for 100% renewable energy or electricity (Bloomberg New Energy Finance [BNEF], 2016). In 2015, the G7 and G20 committed to accelerate the provision of access to renewables and efficiency (REN21, 2016). In conjunction with all of the above priorities, clean energy investment surged in 2015 to a new record of $329 billion, despite low, fossil fuel prices. A significant “decoupling” of economic and carbon dioxide (CO2) growth was also evident, due in part to China’s increased use of renewable energy and efforts by member countries of the Organization for Economic Cooperation and Development (OECD) to foster greater use of renewables and efficiency (REN21, 2016).


Author(s):  
Nick Jelley

‘Why do we need renewables?’ describes the dangers of fossil fuels and explains the importance of renewable energy as an alternative. It shows that the use of fossil fuels causes global warming and climate change, leading to widespread concern, and also to a growing realization of the harm caused by the air pollution from coal burning and from internal combustion engines in cars and lorries. These threats are causing a switch away from fossil fuels to renewables that is gaining impetus from the growing awareness of the increased intensity and frequency of extreme weather seen in recent years. This transition is also being aided by the falling price of clean energy from renewables, in particular, solar and wind farms, which will become the dominant sources. The area of land or sea required for these farms is readily available, as are the back-ups required to handle their variability. Alternative supplies of low-carbon energy are examined. In the Paris Agreement in 2015, it was recognized that carbon dioxide emissions must reach net-zero by 2050 to avoid dangerous climate change.


Significance Despite its promotion of an innovation ecosystem to attract start-ups, Abu Dhabi has overall made little progress in addressing the impact of the clean-energy transition on long-term demand for fossil fuels. As COVID-19 hits private consumption hard, Dubai is promoting expatriate-friendly labour market and legal reforms, with an eye to the troubled real estate sector. Impacts Abu Dhabi’s sovereign wealth funds will increase their exposure to the overseas oil derivatives industry. Dubai will shift attention to taming oversupply in the flagging property market, and developers will be under increased scrutiny. Ambitious oil production targets will increase tensions with Saudi Arabia; a medium-term OPEC exit is possible. Abu Dhabi will prioritise high-profile space and nuclear projects that generate soft power and boost innovation.


Sign in / Sign up

Export Citation Format

Share Document