The Scenario Barents Sea study: a case of minimal realistic modelling to compare management strategies for marine ecosystems

Author(s):  
T. Schweder ◽  
C. J. Camphuysen
Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2060
Author(s):  
Elvira Buonocore ◽  
Umberto Grande ◽  
Pier Paolo Franzese ◽  
Giovanni F. Russo

The biotic and abiotic assets of the marine environment form the “marine natural capital” embedded in the global ocean. Marine natural capital provides the flow of “marine ecosystem services” that are directly used or enjoyed by people providing benefits to human well-being. They include provisioning services (e.g., food), regulation and maintenance services (e.g., carbon sequestration and storage, and coastal protection), and cultural services (e.g., tourism and recreational benefits). In recent decades, human activities have increased the pressures on marine ecosystems, often leading to ecosystem degradation and biodiversity loss and, in turn, affecting their ability to provide benefits to humans. Therefore, effective management strategies are crucial to the conservation of healthy and diverse marine ecosystems and to ensuring their long-term generation of goods and services. Biophysical, economic, and sociocultural assessments of marine ecosystem services are much needed to convey the importance of natural resources to managers and policy makers supporting the development and implementation of policies oriented for the sustainable management of marine resources. In addition, the accounting of marine ecosystem service values can be usefully complemented by their mapping to enable the identification of priority areas and management strategies and to facilitate science–policy dialogue. Given this premise, this study aims to review trends and evolution in the concept of marine ecosystem services. In particular, the global scientific literature on marine ecosystem services is explored by focusing on the following main aspects: the definition and classification of marine ecosystem services; their loss due to anthropogenic pressures, alternative assessment, and mapping approaches; and the inclusion of marine ecosystem services into policy and decision-making processes.


2022 ◽  
Vol 8 ◽  
Author(s):  
Manuel J. Zetina-Rejón ◽  
Gladis A. López-Ibarra ◽  
Lorena Rocha-Tejeda ◽  
Alesa Flores-Guzmán ◽  
Inés López-Ercilla ◽  
...  

The constant demand for seafood products and the undeniable effects of fishing on marine ecosystems make it urgent to implement an ecosystem approach, even in data-poor scenarios such as small-scale fisheries. Understanding the impacts of fishing is essential for promoting management strategies that prevent irreversible damage to marine ecosystems. Thus, ecosystem quantitative science-based models have been frequently used to evaluate the effects of fishing, although fishers’ local ecological knowledge (LEK) can aid the implementation of qualitative models, particularly in data-poor conditions. Here, we present a framework for simulating and assessing the effects of fishing following two strategies: (1) for both types of models, we simulated species removal scenarios, and (2) for quantitative science-based models, we fitted time series to dynamically assessed impacts. The impacts were analyzed through ecological indicators commonly used for quantitative models, and because these indicators cannot be easily estimated for qualitative models, we propose the use of topological indicators in both types of models. The approach was applied to three case studies of small-scale finfish fisheries in northwestern Mexico. We found that the ecosystem response to species removal was different in each case study and that the target species can play an important role in ecosystems, but their removal does not generate abrupt changes in the ecosystem structure. The quantitative science-based models were able to reproduce the historical catch trends, which allowed us to reveal that changes in ecosystems are indeed influenced by fishing effort but also by underlying primary productivity. Furthermore, topological and ecological indicators showed similar trends in the quantitative models, which suggests that the former could be useful when data-poor conditions allow only qualitative models. This result confirms the relevance of the participation of fishers in generating qualitative models and their decisive role in the discussion of co-management strategies and risk scenarios in a better-informed manner.


2021 ◽  
Vol 13 (16) ◽  
pp. 3136
Author(s):  
Leigh W. Tait ◽  
Shane Orchard ◽  
David R. Schiel

Coastal marine ecosystems are under stress, yet actionable information about the cumulative effects of human impacts has eluded ecologists. Habitat-forming seaweeds in temperate regions provide myriad irreplaceable ecosystem services, but they are increasingly at risk of local and regional extinction from extreme climatic events and the cumulative impacts of land-use change and extractive activities. Informing appropriate management strategies to reduce the impacts of stressors requires comprehensive knowledge of species diversity, abundance and distributions. Remote sensing undoubtedly provides answers, but collecting imagery at appropriate resolution and spatial extent, and then accurately and precisely validating these datasets is not straightforward. Comprehensive and long-running monitoring of rocky reefs exist globally but are often limited to a small subset of reef platforms readily accessible to in-situ studies. Key vulnerable habitat-forming seaweeds are often not well-assessed by traditional in-situ methods, nor are they well-captured by passive remote sensing by satellites. Here we describe the utility of drone-based methods for monitoring and detecting key rocky intertidal habitat types, the limitations and caveats of these methods, and suggest a standardised workflow for achieving consistent results that will fulfil the needs of managers for conservation efforts.


2012 ◽  
Vol 69 (6) ◽  
pp. 1105-1120 ◽  
Author(s):  
Jennifer A. Devine ◽  
Peter J. Wright ◽  
Heidi E. Pardoe ◽  
Mikko Heino

Trait evolution over time periods spanning generations, not millennia, is increasingly observed to be above the natural baseline in populations experiencing human-induced perturbations. We investigated the relative speed of trait change by comparing rates of evolution in haldanes and darwins for size at maturation as measured by probabilistic maturation reaction norm midpoints for fish stocks from the Pacific Ocean, North Atlantic, Barents Sea, eastern Baltic Sea, and the North Sea. Rates in haldanes for 23 stocks ranged from –2.2 to 0.9 and from 0.5 to 153 in kilodarwins for 26 stocks. The highest rates of evolution corresponded to the most heavily exploited stocks; rates slowed after moratoria were introduced. The estimated rates in fish life-history characteristics were comparable to other examples of human-induced evolution and faster than naturally induced rates. Stocks with high growth showed slower evolutionary change, even under high mortality, suggesting that compensatory somatic growth can slow the rate of trait evolution. Regardless of whether trait changes are due to exploitation or environmental factors, the costs of ignoring trait evolution are high. Management strategies should be based upon precautionary principles; therefore, the effect of changing traits must be integrated into the fisheries assessment process.


2020 ◽  
Vol 77 (4) ◽  
pp. 1456-1462
Author(s):  
Gary P Griffith

Abstract The themed article set (TS) “Science in support of a nonlinear non-equilibrium world” reflects the challenge presented by the increasing potential for complex non-linear behaviour in marine ecosystems, many of which are undergoing dramatic changes due to anthropogenic perturbations. Marine ecosystems are complex adaptive systems, yet management strategies are often guided by a linear, stable perspective that excludes non-linearities and the possibility for evolution and adaptation. Rapidly increasing amounts of observational data, the interdisciplinary development of powerful mathematical approaches from complexity theory, and the evolving complex adaptive systems approach that includes human behaviour promise to substantially advance the development of management strategies. For these reasons, the ICES Journal of Marine Science solicited contributions to a TS that would take up these issues. In this introduction, I focus on three important areas—causality, prediction, and emergence—where a “non-linear” perspective can advance our understanding and better support sustainable management of ecosystems. I briefly present the nine contributions that are included in the themed set and suggest some ways forward. We hope that these articles serve to convince managers and marine scientists of the benefits of incorporating approaches and results from research on non-linear dynamics.


2015 ◽  
Vol 370 (1659) ◽  
pp. 20130271 ◽  
Author(s):  
J. A. D. Fisher ◽  
M. Casini ◽  
K. T. Frank ◽  
C. Möllmann ◽  
W. C. Leggett ◽  
...  

Comparative analyses of the dynamics of exploited marine ecosystems have led to differing hypotheses regarding the primary causes of observed regime shifts, while many ecosystems have apparently not undergone regime shifts. These varied responses may be partly explained by the decade-old recognition that within-system spatial heterogeneity in key climate and anthropogenic drivers may be important, as recent theoretical examinations have concluded that spatial heterogeneity in environmental characteristics may diminish the tendency for regime shifts. Here, we synthesize recent, empirical within-system spatio-temporal analyses of some temperate and subarctic large marine ecosystems in which regime shifts have (and have not) occurred. Examples from the Baltic Sea, Black Sea, Bengula Current, North Sea, Barents Sea and Eastern Scotian Shelf reveal the largely neglected importance of considering spatial variability in key biotic and abiotic influences and species movements in the context of evaluating and predicting regime shifts. We highlight both the importance of understanding the scale-dependent spatial dynamics of climate influences and key predator–prey interactions to unravel the dynamics of regime shifts, and the utility of spatial downscaling of proposed mechanisms (as evident in the North Sea and Barents Sea) as a means of evaluating hypotheses originally derived from among-system comparisons.


2011 ◽  
Vol 7 (4) ◽  
pp. 484-486 ◽  
Author(s):  
Christian Möllmann ◽  
Alessandra Conversi ◽  
Martin Edwards

Abrupt and rapid ecosystem shifts (where major reorganizations of food-web and community structures occur), commonly termed regime shifts, are changes between contrasting and persisting states of ecosystem structure and function. These shifts have been increasingly reported for exploited marine ecosystems around the world from the North Pacific to the North Atlantic. Understanding the drivers and mechanisms leading to marine ecosystem shifts is crucial in developing adaptive management strategies to achieve sustainable exploitation of marine ecosystems. An international workshop on a comparative approach to analysing these marine ecosystem shifts was held at Hamburg University, Institute for Hydrobiology and Fisheries Science, Germany on 1–3 November 2010. Twenty-seven scientists from 14 countries attended the meeting, representing specialists from seven marine regions, including the Baltic Sea, the North Sea, the Barents Sea, the Black Sea, the Mediterranean Sea, the Bay of Biscay and the Scotian Shelf off the Canadian East coast. The goal of the workshop was to conduct the first large-scale comparison of marine ecosystem regime shifts across multiple regional areas, in order to support the development of ecosystem-based management strategies.


Microplastics ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 15-46
Author(s):  
Amarachi Paschaline Onyena ◽  
Donald Chukwudi Aniche ◽  
Bright Ogechi Ogbolu ◽  
Md. Refat Jahan Rakib ◽  
Jamal Uddin ◽  
...  

Threats emerging from microplastic pollution in the marine environment have received much global attention. This review assessed sources, fate, and impacts of microplastics in marine ecosystems and identified gaps. Most studies document the ubiquity of microplastics and associated environmental effects. Effects include impacts to marine ecosystems, risks to biodiversity, and threats to human health. Microplastic leakage into marine ecosystems arises from plastic waste mismanagement and a lack of effective mitigative strategies. This review identified a scarcity of microplastics’ mitigation strategies from different stakeholders. Lack of community involvement in microplastic monitoring or ecosystem conservation exists due to limited existence of citizen science and stakeholder co-management initiatives. Although some management strategies exist for controlling effects of microplastics (often implemented by local and global environmental groups), a standardized management strategy to mitigate microplastics in coastal areas is urgently required. There is a need to review policy interventions aimed at plastic reduction in or near coastal ecosystems and evaluate their effectiveness. There is also a need to identify focal causes of microplastic pollution in the marine environment through further environmental research and governance approaches. These would extend to creating more effective policies as well as harmonized and extended efforts of educational campaigns and incentives for plastic waste reduction while mandating stringent penalties to help reduce microplastic leakage into the marine environment.


2020 ◽  
Vol 12 (11) ◽  
pp. 1727
Author(s):  
Aikaterini Kikaki ◽  
Konstantinos Karantzalos ◽  
Caroline A. Power ◽  
Dionysios E. Raitsos

Plastic debris in the global ocean is considered an important issue with severe implications for human health and marine ecosystems. Here, we exploited high-resolution multispectral satellite observations over the Bay Islands and Gulf of Honduras, for the period 2014-2019, to investigate the capability of satellite sensors in detecting marine plastic debris. We verified findings with in situ data, recorded the spectral characteristics of floating plastic litter, and identified plastic debris trajectories and sources. The results showed that plastic debris originating from Guatemala’s and Honduras’ rivers (such as Motagua, Ulua, Cangrejal, Tinto and Aguan) ends up in the Caribbean Sea, mainly during the period of August to March, which includes the main rainfall season. The detected spatial trajectories indicated that floating plastic debris travels with an average speed of 6 km d−1, following primarily a southwest (SW) to northeast (NE) direction, driven by the prevailing sea surface currents. Based on several satellite observations, there is no indication of a specific accumulation point, since plastic debris is dispersed by the dynamic circulation in the broader region. Our findings provide evidence that satellite remote sensing is a valuable, cost-effective tool for monitoring the sources and pathways of plastic debris in marine ecosystems, and thus could eventually support management strategies in the global ocean.


Sign in / Sign up

Export Citation Format

Share Document