the Harwell–Boeing (HB) data format

Keyword(s):  
2020 ◽  
Author(s):  
Shu-Chun Kuo ◽  
CHIEN WEI ◽  
Willy Chou

UNSTRUCTURED The recent article published on December 23 27 in 2020 is well-written and of interest, but remains several questions that are required for clarifications, including (1) 30 feature variables with normalized format(mean=0 and SD=1) required to compare model accuracy with those with the raw-data format; (2)inconsistency in variable numbers between entry and preview panels in Figure 4 and reference typos; and (3) data-entry format with raw blood laboratory results in Figure 4 inconsistent with the model designed using normalized data to estimate parameters. We conducted a study using the training and testing data provided by the previous study. An artificial neural network(ANN) model was performed to estimate parameters and compare the model accuracy with those eight models provided by the previous study. We found that (1) normalized data yield higher accuracy than that with the raw data; (2) typos definitely exist at the bottom review (=32>30 variables in the entry) panels in Figure 4 and typos in Table 6; and (3)the ANN earns a probability of survival(=0.91) higher than that(=0.71) in the previous study using the similar entry data when the raw data are assumed in the app. We also demonstrated an author-made app using the visualization to display the prediction result, which is novel and innovative to make the result improved with a dashboard in comparison with the previous study.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 105
Author(s):  
Khaleel Husain ◽  
Mohd Soperi Mohd Zahid ◽  
Shahab Ul Hassan ◽  
Sumayyah Hasbullah ◽  
Satria Mandala

It is well-known that cardiovascular disease is one of the major causes of death worldwide nowadays. Electrocardiogram (ECG) sensor is one of the tools commonly used by cardiologists to diagnose and detect signs of heart disease with their patients. Since fast, prompt and accurate interpretation and decision is important in saving the life of patients from sudden heart attack or cardiac arrest, many innovations have been made to ECG sensors. However, the use of traditional ECG sensors is still prevalent in the clinical settings of many medical institutions. This article provides a comprehensive survey on ECG sensors from hardware, software and data format interoperability perspectives. The hardware perspective outlines a general hardware architecture of an ECG sensor along with the description of its hardware components. The software perspective describes various techniques (denoising, machine learning, deep learning, and privacy preservation) and other computer paradigms used in the software development and deployment for ECG sensors. Finally, the format interoperability perspective offers a detailed taxonomy of current ECG formats and the relationship among these formats. The intention is to help researchers towards the development of modern ECG sensors that are suitable and approved for adoption in real clinical settings.


Sign in / Sign up

Export Citation Format

Share Document