The sliding mechanism

1971 ◽  
pp. 237-262
Keyword(s):  
Author(s):  
H. Mohri

In 1959, Afzelius observed the presence of two rows of arms projecting from each outer doublet microtubule of the so-called 9 + 2 pattern of cilia and flagella, and suggested a possibility that the outer doublet microtubules slide with respect to each other with the aid of these arms during ciliary and flagellar movement. The identification of the arms as an ATPase, dynein, by Gibbons (1963)strengthened this hypothesis, since the ATPase-bearing heads of myosin molecules projecting from the thick filaments pull the thin filaments by cross-bridge formation during muscle contraction. The first experimental evidence for the sliding mechanism in cilia and flagella was obtained by examining the tip patterns of molluscan gill cilia by Satir (1965) who observed constant length of the microtubules during ciliary bending. Further evidence for the sliding-tubule mechanism was given by Summers and Gibbons (1971), using trypsin-treated axonemal fragments of sea urchin spermatozoa. Upon the addition of ATP, the outer doublets telescoped out from these fragments and the total length reached up to seven or more times that of the original fragment. Thus, the arms on a certain doublet microtubule can walk along the adjacent doublet when the doublet microtubules are disconnected by digestion of the interdoublet links which connect them with each other, or the radial spokes which connect them with the central pair-central sheath complex as illustrated in Fig. 1. On the basis of these pioneer works, the sliding-tubule mechanism has been established as one of the basic mechanisms for ciliary and flagellar movement.


2004 ◽  
Vol 24 (24) ◽  
pp. 10965-10974 ◽  
Author(s):  
Philipp Korber ◽  
Tim Luckenbach ◽  
Dorothea Blaschke ◽  
Wolfram Hörz

ABSTRACT The yeast PHO5 promoter is a model system for the role of chromatin in eukaryotic gene regulation. Four positioned nucleosomes in the repressed state give way to an extended DNase I hypersensitive site upon induction. Recently this hypersensitive site was shown to be devoid of histone DNA contacts. This raises the mechanistic question of how histones are removed from the promoter. A displacement in trans or movement in cis, the latter according to the well established nucleosome sliding mechanism, are the major alternatives. In this study, we embedded the PHO5 promoter into the context of a small plasmid which severely restricts the space for nucleosome sliding along the DNA in cis. Such a construct would either preclude the chromatin transition upon induction altogether, were it to occur in cis, or gross changes in chromatin around the plasmid would be the consequence. We observed neither. Instead, promoter opening on the plasmid was indistinguishable from opening at the native chromosomal locus. This makes a sliding mechanism for the chromatin transition at the PHO5 promoter highly unlikely and points to histone eviction in trans.


2018 ◽  
Vol 13 (1) ◽  
Author(s):  
Yoshikazu Mori ◽  
Akihiko Nakada

A patient lift is an assistive device for patients who lack sufficient strength or muscle control to be transferred between a wheelchair and a toilet or other places. Patient lifts of two kinds are commonly used: overhead lifts and mobile lifts. Nevertheless, because of its size and weight, carrying even a mobile lift with a wheelchair is difficult when leaving home. This study examined a novel portable patient lift that is small and light, sufficient to be carried using a wheelchair in a folded state. It is compact, light, and portable because it has no actuator. Moreover, its operation is simple. It is useful not only at home or in a nursing home but on any flat surface during daily excursions and activities, even in a conventional lavatory. A caregiver can transfer a user with a small force because this lift has a sliding mechanism that brings the fulcrum closer to the patient's center of mass. Experimental results underscore the effectiveness of the proposed patient lift.


1986 ◽  
Vol 32 (110) ◽  
pp. 101-119 ◽  
Author(s):  
Almut Iken ◽  
Robert A. Bindschadler

AbstractDuring the snow-melt season of 1982, basal water pressure was recorded in 11 bore holes communicating with the subglacial drainage system. In most of these holes the water levels were at approximately the same depth (around 70 m below surface). The large variations of water pressure, such as diurnal variations, were usually similar at different locations and in phase. In two instances of exceptionally high water pressure, however, systematic phase shifts were observed; a wave of high pressure travelled down-glacier with a velocity of approximately 100 m/h.The glacier-surface velocity was measured at four lines of stakes several times daily. The velocity variations correlated with variations in subglacial water pressure. The functional relationship of water pressure and velocity suggests that fluctuating bed separation was responsible for the velocity variations. The empirical functional relationship is compared to that of sliding over a perfectly lubricated sinusoidal bed. On the basis of the measured velocity-pressure relationship, this model predicts a reasonable value of bed roughness but too high a sliding velocity and unstable sliding at too low a water pressure. The main reason for this disagreement is probably the neglect of friction from debris in the sliding model.The measured water pressure was considerably higher than that predicted by the theory of steady flow through straight cylindrical channels near the glacier bed. Possible reasons are considered. The very large disagreement between measured and predicted pressure suggests that no straight cylindrical channels may have existed.


Author(s):  
Yogesh Kumar ◽  
Ayush Dogra ◽  
Vikash Shaw ◽  
Ajeet Kaushik ◽  
Sanjeev Kumar

Background: Hemoglobin is essential biomolecule for the transportation of oxygen therefore; its assessment is also obligatory very frequently in innumerable clinical practices. Traditional invasive techniques have concomitant shortcomings e.g. time delay, onset of infections and discomfort, which necessitates a non-invasive hemoglobin estimating solution to get rid of these constraints in health informatics. Currently various techniques are underway in allied domain and scanty products are also feasible in the market but due to low satisfaction rate, invasive solutions are still assumed as gold standard. Recently introduced technologies are effectively evolved as optical spectroscopy and digital photographic concepts on different sensing spots e.g. fingertip, palpebral conjunctiva, bulbar conjunctiva and fingernail. Productive sensors utilize more than eight wavelengths to compute hemoglobin concentration and four wavelengths to display only Hb-index (trending of hemoglobin) either in disposable adhesive or reusable clip type sensor’s configuration. Objective: This study aims an optimistic optical spectroscopic technique to measure hemoglobin concentration and conditional usability of non-invasive blood parameters’ diagnostics at point-of-care. Methods: Two distinguishable light emitting sources (810nm & 1300nm) are utilized at isosbestic points with single photodetector (800-1700nm). With this purpose, reusable finger probe assembly is facilitated in transmittance mode based on newly offered sliding mechanism to block ambient light. Results: Investigation with proposed design presents correlation coefficients between reference hemoglobin and every individual feature, multivariate linear regression model for highly correlated independent features. Moreover, principal component analytical model with multivariate linear regression offers mean bias of 0.036 & -0.316 g/dL, precision of 0.878 & 0.838 and limits of agreement from -1.685 to 1.758 g/dL & -1.790 to 1.474 g/dL for 18 & 21 principle components respectively. Conclusion: The encouraging readouts emphasize favorable precision therefore proposed sensing system is amenable to assess hemoglobin in settings with limited resources and strengthening future routes for point of care applications.


Sign in / Sign up

Export Citation Format

Share Document