Genomic islands and evolution of catabolic pathways

2010 ◽  
pp. 255-274 ◽  
Author(s):  
Stéphan Lacour ◽  
Muriel Gaillard ◽  
Jan Roelof van der Meer
2003 ◽  
Vol 14 (3) ◽  
pp. 248-254 ◽  
Author(s):  
Jan Roelof van der Meer ◽  
Vladimir Sentchilo

2020 ◽  
Vol 15 ◽  
Author(s):  
Jiahui Pan ◽  
Xizi Luo ◽  
Tong Shao ◽  
Chaoying Li ◽  
Tingting Zhao ◽  
...  

Background: Synechococcus sp. WH8102 is one of the most abundant photosynthetic organisms in many ocean regions. Objective: The aim of this study is to identify genomic islands (GIs) in Synechococcus sp. WH8102 with integrated methods. Methods: We have applied genomic barcode to identify the GIs in Synechococcus sp. WH8102, which could make genomic regions of different origins visually apparent. The gene expression data of the predicted GIs was analyzed through microarray data which was collected for functional analysis of the relevant genes. Results: Seven GIs were identified in Synechococcus sp. WH8102. Most of them are involved in cell surface modification, photosynthesis and drug resistance. In addition, our analysis also revealed the functions of these GIs, which could be used for in-depth study on the evolution of this strain. Conclusion: Genomic barcodes provide us with a comprehensive and intuitive view of the target genome. We can use it to understand the intrinsic characteristics of the whole genome and identify GIs or other similar elements.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Bryan Angelo P. Roxas ◽  
Jennifer Lising Roxas ◽  
Rachel Claus-Walker ◽  
Anusha Harishankar ◽  
Asad Mansoor ◽  
...  

AbstractClostridioides difficile infection (CDI) is a major healthcare-associated diarrheal disease. Consistent with trends across the United States, C. difficile RT106 was the second-most prevalent molecular type in our surveillance in Arizona from 2015 to 2018. A representative RT106 strain displayed robust virulence and 100% lethality in the hamster model of acute CDI. We identified a unique 46 KB genomic island (GI1) in all RT106 strains sequenced to date, including those in public databases. GI1 was not found in its entirety in any other C. difficile clade, or indeed, in any other microbial genome; however, smaller segments were detected in Enterococcus faecium strains. Molecular clock analyses suggested that GI1 was horizontally acquired and sequentially assembled over time. GI1 encodes homologs of VanZ and a SrtB-anchored collagen-binding adhesin, and correspondingly, all tested RT106 strains had increased teicoplanin resistance, and a majority displayed collagen-dependent biofilm formation. Two additional genomic islands (GI2 and GI3) were also present in a subset of RT106 strains. All three islands are predicted to encode mobile genetic elements as well as virulence factors. Emergent phenotypes associated with these genetic islands may have contributed to the relatively rapid expansion of RT106 in US healthcare and community settings.


2020 ◽  
Vol 36 (Supplement_2) ◽  
pp. i651-i658 ◽  
Author(s):  
Adelme Bazin ◽  
Guillaume Gautreau ◽  
Claudine Médigue ◽  
David Vallenet ◽  
Alexandra Calteau

Abstract Motivation Horizontal gene transfer (HGT) is a major source of variability in prokaryotic genomes. Regions of genome plasticity (RGPs) are clusters of genes located in highly variable genomic regions. Most of them arise from HGT and correspond to genomic islands (GIs). The study of those regions at the species level has become increasingly difficult with the data deluge of genomes. To date, no methods are available to identify GIs using hundreds of genomes to explore their diversity. Results We present here the panRGP method that predicts RGPs using pangenome graphs made of all available genomes for a given species. It allows the study of thousands of genomes in order to access the diversity of RGPs and to predict spots of insertions. It gave the best predictions when benchmarked along other GI detection tools against a reference dataset. In addition, we illustrated its use on metagenome assembled genomes by redefining the borders of the leuX tRNA hotspot, a well-studied spot of insertion in Escherichia coli. panRPG is a scalable and reliable tool to predict GIs and spots making it an ideal approach for large comparative studies. Availability and implementation The methods presented in the current work are available through the following software: https://github.com/labgem/PPanGGOLiN. Detailed results and scripts to compute the benchmark metrics are available at https://github.com/axbazin/panrgp_supdata.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Syed A. K. Shifat Ahmed ◽  
Michelle Rudden ◽  
Sabrina M. Elias ◽  
Thomas J. Smyth ◽  
Roger Marchant ◽  
...  

AbstractPseudomonas aeruginosa uses quorum sensing (QS) to modulate the expression of several virulence factors that enable it to establish severe infections. The QS system in P. aeruginosa is complex, intricate and is dominated by two main N-acyl-homoserine lactone circuits, LasRI and RhlRI. These two QS systems work in a hierarchical fashion with LasRI at the top, directly regulating RhlRI. Together these QS circuits regulate several virulence associated genes, metabolites, and enzymes in P. aeruginosa. Paradoxically, LasR mutants are frequently isolated from chronic P. aeruginosa infections, typically among cystic fibrosis (CF) patients. This suggests P. aeruginosa can undergo significant evolutionary pathoadaptation to persist in long term chronic infections. In contrast, mutations in the RhlRI system are less common. Here, we have isolated a clinical strain of P. aeruginosa from a CF patient that has deleted the transcriptional regulator RhlR entirely. Whole genome sequencing shows the rhlR locus is deleted in PA80 alongside a few non-synonymous mutations in virulence factors including protease lasA and rhamnolipid rhlA, rhlB, rhlC. Importantly we did not observe any mutations in the LasRI QS system. PA80 does not appear to have an accumulation of mutations typically associated with several hallmark pathoadaptive genes (i.e., mexT, mucA, algR, rpoN, exsS, ampR). Whole genome comparisons show that P. aeruginosa strain PA80 is closely related to the hypervirulent Liverpool epidemic strain (LES) LESB58. PA80 also contains several genomic islands (GI’s) encoding virulence and/or resistance determinants homologous to LESB58. To further understand the effect of these mutations in PA80 QS regulatory and virulence associated genes, we compared transcriptional expression of genes and phenotypic effects with isogenic mutants in the genetic reference strain PAO1. In PAO1, we show that deletion of rhlR has a much more significant impact on the expression of a wide range of virulence associated factors rather than deletion of lasR. In PA80, no QS regulatory genes were expressed, which we attribute to the inactivation of the RhlRI QS system by deletion of rhlR and mutation of rhlI. This study demonstrates that inactivation of the LasRI system does not impact RhlRI regulated virulence factors. PA80 has bypassed the common pathoadaptive mutations observed in LasR by targeting the RhlRI system. This suggests that RhlRI is a significant target for the long-term persistence of P. aeruginosa in chronic CF patients. This raises important questions in targeting QS systems for therapeutic interventions.


Author(s):  
Antony T Vincent ◽  
Laurent Intertaglia ◽  
Victor Loyer ◽  
Valérie E Paquet ◽  
Émilie Adouane ◽  
...  

Abstract Genomic islands (Aeromonas salmonicida genomic islands, AsaGEIs) are found worldwide in many isolates of Aeromonas salmonicida subsp. salmonicida, a fish pathogen. To date, five variants of AsaGEI (1a, 1b, 2a, 2b and 2c) have been described. Here, we investigate a sixth AsaGEI, which was identified in France between 2016 and 2019 in 20 A. salmonicida subsp. salmonicida isolates recovered from sick salmon all at the same location. This new AsaGEI shares the same insertion site in the chromosome as the other AsaGEI2s as they all have a homologous integrase gene. This new AsaGEI was thus named AsaGEI2d, and has 5 unique genes compared to the other AsaGEIs. The isolates carrying AsaGEI2d also bear the plasmid pAsa7, which was initially found in an isolate from Switzerland. This plasmid provides resistance to chloramphenicol thanks to a cat gene. This study reveals more about the diversity of the AsaGEIs.


1953 ◽  
Vol 204 (2) ◽  
pp. 681-694 ◽  
Author(s):  
Ben Bloom ◽  
Marjorie R. Stetten ◽  
DeWitt Stetten
Keyword(s):  

PROTEOMICS ◽  
2006 ◽  
Vol 6 (4) ◽  
pp. 1301-1318 ◽  
Author(s):  
Young Hwan Kim ◽  
Kun Cho ◽  
Sung-Ho Yun ◽  
Jin Young Kim ◽  
Kyung-Hoon Kwon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document