Advanced MOS transistor modeling

Author(s):  
Marcio Cherem Schneider ◽  
Carlos Galup-Montoro
Keyword(s):  
1988 ◽  
Vol 49 (C4) ◽  
pp. C4-249-C4-252 ◽  
Author(s):  
L. LAUWERS ◽  
K. DE MEYER
Keyword(s):  

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1683
Author(s):  
Winai Jaikla ◽  
Fabian Khateb ◽  
Tomasz Kulej ◽  
Koson Pitaksuttayaprot

This paper proposes the simulated and experimental results of a universal filter using the voltage differencing differential difference amplifier (VDDDA). Unlike the previous complementary metal oxide semiconductor (CMOS) structures of VDDDA that is present in the literature, the present one is compact and simple, owing to the employment of the multiple-input metal oxide semiconductor (MOS) transistor technique. The presented filter employs two VDDDAs, one resistor and two grounded capacitors, and it offers low-pass: LP, band-pass: BP, band-reject: BR, high-pass: HP and all-pass: AP responses with a unity passband voltage gain. The proposed universal voltage mode filter has high input impedances and low output impedance. The natural frequency and bandwidth are orthogonally controlled by using separated transconductance without affecting the passband voltage gain. For a BP filter, the root mean square (RMS) of the equivalent output noise is 46 µV, and the third intermodulation distortion (IMD3) is −49.5 dB for an input signal with a peak-to peak of 600 mV, which results in a dynamic range (DR) of 73.2 dB. The filter was designed and simulated in the Cadence environment using a 0.18-µm CMOS process from Taiwan semiconductor manufacturing company (TSMC). In addition, the experimental results were obtained by using the available commercial components LM13700 and AD830. The simulation results are in agreement with the experimental one that confirmed the advantages of the filter.


2012 ◽  
Vol 43 (12) ◽  
pp. 995-1002
Author(s):  
Samir Labiod ◽  
Saida Latreche ◽  
Christian Gontrand

2017 ◽  
Vol 24 (6) ◽  
pp. 2753-2764 ◽  
Author(s):  
G. S. Abarca-Jiménez ◽  
J. Mares-Carreño ◽  
M. A. Reyes-Barranca ◽  
B. Granados-Rojas ◽  
S. Mendoza-Acevedo ◽  
...  

2002 ◽  
Vol 716 ◽  
Author(s):  
Nihar R. Mohapatra ◽  
Madhav P. Desai ◽  
Siva G. Narendra ◽  
V. Ramgopal Rao

AbstractThe impact of technology scaling on the MOS transistor performance is studied over a wide range of dielectric permittivities using two-dimensional (2-D) device simulations. It is found that the device short channel performance is degraded with increase in the dielectric permittivity due to an increase in dielectric physical thickness to channel length ratio. For Kgate greater than Ksi, we observe a substantial coupling between source and drain regions through the gate dielectric. We provide extensive 2-D device simulation results to prove this point. Since much of the coupling between source and drain occurs through the gate dielectric, it is observed that the overlap length is an important parameter for optimizing DC performance in the short channel MOS transistors. The effect of stacked gate dielectric and spacer dielectric on the MOS transistor performance is also studied to substantiate the above observations.


Sign in / Sign up

Export Citation Format

Share Document