Coming together and keeping apart: aggregation pheromones and host-marking pheromones

2014 ◽  
pp. 105-112
Author(s):  
Tristram D. Wyatt
Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1269
Author(s):  
David K. Mfuti ◽  
Amanuel Tamiru ◽  
William D. J. Kirk ◽  
Adeyemi O. Akinyemi ◽  
Heather Campbell ◽  
...  

The potential of semiochemicals to lure insect pests to a trap where they can be killed with biopesticides has been demonstrated as an eco-friendly pest management alternative. In this study, we tested two recently characterized male-produced aggregation pheromones of the bean flower thrips Megalurothrips sjostedti (Trybom), namely (R)-lavandulyl 3-methylbutanoate (major) and (R)-lavandulol (minor), for their field efficacy. Moreover, compatibility of these pheromones and two other thrips attractants, Lurem-TR and neryl (S)-2-methylbutanoate, with the entomopathogenic fungus (EPF) Metarhizium anisopliae ICIPE 69 has been determined. Our study revealed that the M. sjostedti aggregation pheromones have dose-dependent antifungal effects on the EPF viability, but showed no fungistatic effect at a field-realistic dose for attraction of thrips. (R)-lavandulyl 3-methylbutanoate had similar antifungal effects as neryl (S)-2-methylbutanoate 8 days after exposure; whereas, Lurem-TR had a stronger antifungal effect than other thrips attractants. In the semi-field experiments, all autoinoculation devices maintained at least 86% viability of M. anisopliae conidia after 12 days of exposure. Field trials demonstrated for the first time that (R)-lavandulyl 3-methylbutanoate increases trap catches. Our findings pave a way for designing a lure-and-kill thrips management strategy to control bean flower thrips using autoinoculation devices or spot spray application.


Insects ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 828
Author(s):  
Viviane Araujo Dalbon ◽  
Juan Pablo Molina Acevedo ◽  
Karlos Antônio Lisboa Ribeiro Junior ◽  
Thyago Fernando Lisboa Ribeiro ◽  
Joao Manoel da Silva ◽  
...  

Coupling several natural and synthetic lures with aggregation pheromones from the palm weevils Rhynchophorus palmarum and R. ferrugineus reveals a synergy that results in an increase in pest captures. The combined attraction of pure pheromones, ethyl acetate, and decaying sweet and starchy plant tissue increases the net total of mass-trapped weevils. The 2018 entrance of the red palm weevil (RPW) into South America has threatened palm-product income in Brazil and other neighboring countries. The presence of the new A1 quarantine pest necessitates the review of all available options for a sustainable mass-trapping, monitoring, and control strategy to ultimately target both weevils with the same device. The effective lure-blend set for the mass-trapping system will attract weevils in baiting and contaminating stations for entomopathogenic fungi that the same weevils will spread.


1977 ◽  
Vol 33 (5) ◽  
pp. 680-682 ◽  
Author(s):  
N. L. Treverrow ◽  
B. F. Stone ◽  
Margaret Cowie

2004 ◽  
Vol 15 (5) ◽  
pp. 839-844 ◽  
Author(s):  
Stephen J. Martin ◽  
Nicolas Châline ◽  
Benjamin P. Oldroyd ◽  
Graeme R. Jones ◽  
Francis L. W. Ratnieks

Insects ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 138
Author(s):  
Vincas Būda ◽  
Laima Blažytė-Čereškienė ◽  
Sandra Radžiutė ◽  
Violeta Apšegaitė ◽  
Patrick Stamm ◽  
...  

The plantation area of sea buckthorn (Hippophae rhamnoides L.) is expanding in many European countries due to increasing demand for berries, thus creating suitable conditions for the rapid expansion of the fruit fly Rhagoletis batava, a pest of economic importance. To decrease insecticide use, effective means for pest population monitoring are required, including the use of pheromones. Male fruit flies emit (-)-δ-heptalactone as revealed by gas chromatography-mass spectrometry analyses of samples obtained using headspace methods. The two enantiomers of δ-heptalactone were synthesized using enantioselective synthesis. A gas chromatography-electroantennographic detection analysis of both stereoisomers revealed that only (-)-δ-heptalactone elicited electrophysiological responses, whereas no signal was registered to (+)-δ-heptalactone in fruit flies of either sex. In the field assay, traps baited with (-)-δ-heptalactone caught significantly more fruit flies compared with the unbaited traps. Our results are the first to demonstrate the efficacy of (-)-δ-heptalactone as a bait for trapping R. batava. As a behaviorally attractive compound to R. batava fruit flies of both sexes, (-)-δ-heptalactone is attributed to aggregation pheromones. This is the first report of an aggregation pheromone within the genus Rhagoletis.


2014 ◽  
Vol 39 (2) ◽  
pp. 347-354 ◽  
Author(s):  
Emadeldin Y. Fawaz ◽  
Sandra A. Allan ◽  
Ulrich R. Bernier ◽  
Peter J. Obenauer ◽  
Joseph W. Diclaro

Sign in / Sign up

Export Citation Format

Share Document