scholarly journals EXTRAPOLATION OF DESIGN GUIDELINES DURING THE CONCEPTUAL DESIGN PHASE: A METHOD TO SUPPORT PRODUCT ARCHITECTURE DESIGN

2020 ◽  
Vol 1 ◽  
pp. 857-866
Author(s):  
G. Formentini ◽  
C. Favi ◽  
F. Bouissiere ◽  
C. Cuiller ◽  
P.-E. Dereux ◽  
...  

AbstractThe work aims at the definition of a design methodology able to drive designers in the definition of product architectures, starting from rough information available at the conceptual design. The methodology identifies design guidelines useful for the development of product architectures optimized for a given target (i.e. assembly, cost). The methodology is based on domains which combine attributes related to a specific aspect of the target. The exploratory application of the methodology was performed to address the equipment installation of a civil aircraft for assembly/installation target.

Author(s):  
Damien Motte ◽  
Robert Bjärnemo

The morphological matrix is an important element of the engineering design methodology and is present in many textbooks. This method originally aimed at generating an exhaustive set of solutions for a given problem, by decomposing it into subproblems, finding solutions to each subproblem, and combining them. One issue associated with the morphological matrix has been the necessity to deal with the combinatorial explosions of solutions, especially at the conceptual design phase, when the still fuzzy nature of the design problem precludes the use of automated search for an optimal solution by means of specific algorithms (the “manual engineering design” context), apart from a few exceptions. Several heuristics based on the reduction of the number of combinations are investigated, and their efficiency is assessed. It is showed that the often-recommended compatibility matrix heuristic is the least efficient and can result in overlooking potentially interesting combinations. In fact all heuristics, even combined, generally fail to decrease the number of combinations to a level that can be handled by the designers, unless the original number of combinations is low. However, if one abandons the principle of an exhaustive investigation of the combinations in order to find the “best” solution, it can be showed statistically that the probability of ending up with a “good” concept among a very large number of combinations can be attained. Moreover, it is showed that the number of combinations one is willing to investigate also can contribute to increase this probability. Moreover the experience gained from the first round of investigation can serve as a guide to choose and assess other combinations. Based on those results, some recommendations for using the morphological matrix with all the different heuristics are given. Moreover, this paper discusses and relativizes the importance of the combinatorial explosion issue of morphological matrix compared with some other advantages and shortcomings of the method.


Author(s):  
Filip Valjak ◽  
Nenad Bojčetić

AbstractAdditive Manufacturing (AM) brought new design freedom and possibilities that enable design and manufacturing of products with new forms and functionalities. To utilise these possibilities a new design approach emerged, Design for Additive Manufacturing (DfAM), that contains methods and tools for supporting AM oriented design process. Designers working with AM are aware of the need to apply DfAM and AM possibilities in conceptual design phase where they have the most significant influence on product architecture and form but are facing a lack of suitable DfAM approaches for early design phases. Therefore, the presented research is investigating possibilities of storing and representing AM knowledge in the form of design principles to be used in the conceptual design phase. The paper proposes conceiving of Design Principles for Additive Manufacturing repository where formalised AM knowledge is stored in the form of design principles and structured based on function criteria. In the paper, various elements of design principle representation are discussed, as well as their role in the conceptual design process.


Author(s):  
Daniel Krus ◽  
Katie Grantham Lough

When designing a product, the earlier the potential risks can be identified, the more costs can be saved, as it is easier to modify a design in its early stages. Several methods exist to analyze the risk in a system, but all require a mature design. However, by applying the concept of “common interfaces” to a functional model and utilizing a historical knowledge base, it is possible to analyze chains of failures during the conceptual phase of product design. This paper presents a method based on these “common interfaces” to be used in conjunction with other methods such as Risk in Early Design in order to allow a more complete risk analysis during the conceptual design phase. Finally, application of this method is demonstrated in a design setting by applying it to a thermal control subsystem.


2017 ◽  
Vol 107 (09) ◽  
pp. 640-646
Author(s):  
J. Jaensch ◽  
A. Neyrinck ◽  
A. Lechler ◽  
A. Prof. Verl

Maschinen und besonders Anlagen werden meist in individuellen Prozessen entwickelt. Bereits in der Angebots- und Konzeptionsphase werden im direkten Austausch mit dem Auftraggeber unterschiedliche Varianten diskutiert und iteriert. Zur Bewertung der Varianten sind neben den Anschaffungskosten unter anderem laufzeitabhängige Größen wie Taktzeiten und Energieeffizienz zu untersuchen. Der Beitrag stellt einen Ansatz zur simulationsbasierten Untersuchung für die automatisierte Variantengenerierung von Anlagen vor.   The development of machines or plants is a very individual process. Within the conceptual design phase, many different variants have to be discussed with customers and adapted to their needs. For a decent evaluation of the different variants, many parameters beyond static values such as costs are important. Term-dependent values like cycle times and energy efficiency also have to be investigated. This paper presents a method for the automated generation of plant variants based on simulation.


2018 ◽  
Vol 29 (11) ◽  
pp. 665-689
Author(s):  
C. Hartmann ◽  
R. Chenouard ◽  
E. Mermoz ◽  
A. Bernard

Author(s):  
R. J. Engel ◽  
P. J. Tyler ◽  
L. R. Wood ◽  
D. T. Entenmann

Westinghouse has been a strong supporter of Reliability, Availability, and Maintainability (RAM) principles during product design and development. This is exemplified by the actions taken during the design of the 501F engine to ensure that high reliability and availability was achieved. By building upon past designs, utilizing those features most beneficial, and improving other areas, a highly reliable product was developed. A full range of RAM tools and techniques were utilized to achieve this result, including reliability allocations, modelling, and effective redesign of critical components. These activities began during the conceptual design phase and will continue throughout the life cycle of these engines until they are decommissioned.


Sign in / Sign up

Export Citation Format

Share Document