scholarly journals Reduction of dynatomic curves

2018 ◽  
Vol 39 (10) ◽  
pp. 2717-2768 ◽  
Author(s):  
JOHN R. DOYLE ◽  
HOLLY KRIEGER ◽  
ANDREW OBUS ◽  
RACHEL PRIES ◽  
SIMON RUBINSTEIN-SALZEDO ◽  
...  

In this paper, we make partial progress on a function field version of the dynamical uniform boundedness conjecture for certain one-dimensional families ${\mathcal{F}}$ of polynomial maps, such as the family $f_{c}(x)=x^{m}+c$, where $m\geq 2$. We do this by making use of the dynatomic modular curves $Y_{1}(n)$ (respectively $Y_{0}(n)$) which parametrize maps $f$ in ${\mathcal{F}}$ together with a point (respectively orbit) of period $n$ for $f$. The key point in our strategy is to study the set of primes $p$ for which the reduction of $Y_{1}(n)$ modulo $p$ fails to be smooth or irreducible. Morton gave an algorithm to construct, for each $n$, a discriminant $D_{n}$ whose list of prime factors contains all the primes of bad reduction for $Y_{1}(n)$. In this paper, we refine and strengthen Morton’s results. Specifically, we exhibit two criteria on a prime $p$ dividing $D_{n}$: one guarantees that $p$ is in fact a prime of bad reduction for $Y_{1}(n)$, yet this same criterion implies that $Y_{0}(n)$ is geometrically irreducible. The other guarantees that the reduction of $Y_{1}(n)$ modulo $p$ is actually smooth. As an application of the second criterion, we extend results of Morton, Flynn, Poonen, Schaefer, and Stoll by giving new examples of good reduction of $Y_{1}(n)$ for several primes dividing $D_{n}$ when $n=7,8,11$, and $f_{c}(x)=x^{2}+c$. The proofs involve a blend of arithmetic and complex dynamics, reduction theory for curves, ramification theory, and the combinatorics of the Mandelbrot set.

2008 ◽  
Vol 19 (05) ◽  
pp. 541-556
Author(s):  
ALINA ANDREI

In this paper, we study the parameter space of the quadratic polynomial family fλ,μ(z, w) = (λz + w2, μw + z2), which exhibits interesting dynamics. Two distinct subsets of the parameter space are studied as appropriate analogs of the one-dimensional Mandelbrot set and some of their properties are proved by using Lyapunov exponents. In the more general context of holomorphic families of regular maps, we show that the sum of the Lyapunov exponents is a plurisubharmonic function of the parameter, and pluriharmonic on the set of expanding maps. Moreover, for the family fλ,μ, we prove that the sum of the Lyapunov exponents is continuous.


2010 ◽  
Vol 20 (12) ◽  
pp. 4119-4125
Author(s):  
HISASHI ISHIDA ◽  
TSUYOSHI ITOH

Sun and Yin [2007] had presented a precise description of the connectedness locus of the family of real biquadratic polynomials {pa,b(z) = (z2 + a)2 + b}. We shall first give an elementary proof of their result. Second, we shall give a precise description of the sets of parameters (a, b) such that the family {pa,b} has attracting fixed points.


2016 ◽  
Vol 152 (11) ◽  
pp. 2405-2442 ◽  
Author(s):  
Anna Cadoret ◽  
Akio Tamagawa

Let$C$be a smooth, separated and geometrically connected curve over a finitely generated field$k$of characteristic$p\geqslant 0$,$\unicode[STIX]{x1D702}$the generic point of$C$and$\unicode[STIX]{x1D70B}_{1}(C)$its étale fundamental group. Let$f:X\rightarrow C$be a smooth proper morphism, and$i\geqslant 0$,$j$integers. To the family of continuous$\mathbb{F}_{\ell }$-linear representations$\unicode[STIX]{x1D70B}_{1}(C)\rightarrow \text{GL}(R^{i}f_{\ast }\mathbb{F}_{\ell }(j)_{\overline{\unicode[STIX]{x1D702}}})$(where$\ell$runs over primes$\neq p$), one can attach families of abstract modular curves$C_{0}(\ell )$and$C_{1}(\ell )$, which, in this setting, are the analogues of the usual modular curves$Y_{0}(\ell )$and$Y_{1}(\ell )$. If$i\not =2j$, it is conjectured that the geometric and arithmetic gonalities of these abstract modular curves go to infinity with$\ell$(for the geometric gonality, under a certain necessary condition). We prove the conjecture for the arithmetic gonality of the abstract modular curves$C_{1}(\ell )$. We also obtain partial results for the growth of the geometric gonality of$C_{0}(\ell )$and$C_{1}(\ell )$. The common strategy underlying these results consists in reducing by specialization theory to the case where the base field$k$is finite in order to apply techniques of counting rational points.


1995 ◽  
Vol 05 (05) ◽  
pp. 1351-1355
Author(s):  
VLADIMIR FEDORENKO

We give a characterization of complex and simple interval maps and circle maps (in the sense of positive or zero topological entropy respectively), formulated in terms of the description of the dynamics of the map on its chain recurrent set. We also describe the behavior of complex maps on their periodic points.


Algorithms ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 101
Author(s):  
Alicia Cordero ◽  
Marlon Moscoso-Martínez ◽  
Juan R. Torregrosa

In this paper, we present a new parametric family of three-step iterative for solving nonlinear equations. First, we design a fourth-order triparametric family that, by holding only one of its parameters, we get to accelerate its convergence and finally obtain a sixth-order uniparametric family. With this last family, we study its convergence, its complex dynamics (stability), and its numerical behavior. The parameter spaces and dynamical planes are presented showing the complexity of the family. From the parameter spaces, we have been able to determine different members of the family that have bad convergence properties, as attracting periodic orbits and attracting strange fixed points appear in their dynamical planes. Moreover, this same study has allowed us to detect family members with especially stable behavior and suitable for solving practical problems. Several numerical tests are performed to illustrate the efficiency and stability of the presented family.


1995 ◽  
Vol 05 (03) ◽  
pp. 673-699 ◽  
Author(s):  
NÚRIA FAGELLA

The complexification of the standard family of circle maps Fαβ(θ)=θ+α+β+β sin(θ) mod (2π) is given by Fαβ(ω)=ωeiαe(β/2)(ω−1/ω) and its lift fαβ(z)=z+a+β sin(z). We investigate the three-dimensional parameter space for Fαβ that results from considering a complex and β real. In particular, we study the two-dimensional cross-sections β=constant as β tends to zero. As the functions tend to the rigid rotation Fα,0, their dynamics tend to the dynamics of the family Gλ(z)=λzez where λ=e−iα. This new family exhibits behavior typical of the exponential family together with characteristic features of quadratic polynomials. For example, we show that the λ-plane contains infinitely many curves for which the Julia set of the corresponding maps is the whole plane. We also prove the existence of infinitely many sets of λ values homeomorphic to the Mandelbrot set.


Planta Medica ◽  
2018 ◽  
Vol 85 (03) ◽  
pp. 225-230 ◽  
Author(s):  
Xinhui Wang ◽  
Dujuan Wang ◽  
Xue Wang ◽  
Manana Khutsishvili ◽  
Kamilla Tamanyan ◽  
...  

AbstractPhytochemical investigation of Camphorosma lessingii has resulted in the isolation of four previously unreported isoflavones (1–4) and eight known compounds (5–12). Nine of these compounds (1–6, 8–10) are reported for the first time from members of the family Amaranthaceae. The structures of all isolated compounds were determined by spectroscopic methods, primarily one-dimensional and two-dimensional nuclear magnetic resonance and mass spectrometry. The absolute configuration of 6 was confirmed by circular dichroism. Inhibition of the organic anion transporters, OAT1 and OAT3, by the isolated compounds was evaluated. Among them, 7, 2′-dihydroxy- 6,8-dimethoxyisoflavone (1), 2′-hydroxy-6,7,8-trimethoxyisoflavone (2), 6,2′-dihydroxy-7,8-dimethoxyisoflavone (3), and 7-methoxyflavone (5) showed a significant inhibitory effect on 6-carboxyfluorescein uptake mediated by OAT1 and OAT3.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-17
Author(s):  
Chiara Zanini ◽  
Fabio Zanolin

We prove the existence and multiplicity of periodic solutions as well as solutions presenting a complex behavior for the one-dimensional nonlinear Schrödinger equation -ε2u′′+V(x)u=f(u), where the potential V(x) approximates a two-step function. The term f(u) generalizes the typical p-power nonlinearity considered by several authors in this context. Our approach is based on some recent developments of the theory of topological horseshoes, in connection with a linked twist maps geometry, which are applied to the discrete dynamics of the Poincaré map. We discuss the periodic and the Neumann boundary conditions. The value of the term ε>0, although small, can be explicitly estimated.


Sign in / Sign up

Export Citation Format

Share Document