A new characterization of the Haagerup property by actions on infinite measure spaces

2020 ◽  
pp. 1-20
Author(s):  
THIEBOUT DELABIE ◽  
PAUL JOLISSAINT ◽  
ALEXANDRE ZUMBRUNNEN

The aim of the article is to provide a characterization of the Haagerup property for locally compact, second countable groups in terms of actions on $\unicode[STIX]{x1D70E}$ -finite measure spaces. It is inspired by the very first definition of amenability, namely the existence of an invariant mean on the algebra of essentially bounded, measurable functions on the group.

2004 ◽  
Vol 95 (1) ◽  
pp. 124 ◽  
Author(s):  
Volker Runde

Let $\mathcal A$ be a dual Banach algebra with predual $\mathcal A_*$ and consider the following assertions: (A) $\mathcal A$ is Connes-amenable; (B) $\mathcal A$ has a normal, virtual diagonal; (C) $\mathcal A_*$ is an injective $\mathcal A$-bimodule. For general $\mathcal A$, all that is known is that (B) implies (A) whereas, for von Neumann algebras, (A), (B), and (C) are equivalent. We show that (C) always implies (B) whereas the converse is false for $\mathcal A = M(G)$ where $G$ is an infinite, locally compact group. Furthermore, we present partial solutions towards a characterization of (A) and (B) for $\mathcal A = B(G)$ in terms of $G$: For amenable, discrete $G$ as well as for certain compact $G$, they are equivalent to $G$ having an abelian subgroup of finite index. The question of whether or not (A) and (B) are always equivalent remains open. However, we introduce a modified definition of a normal, virtual diagonal and, using this modified definition, characterize the Connes-amenable, dual Banach algebras through the existence of an appropriate notion of virtual diagonal.


Author(s):  
Theo Bühler ◽  
Vadim Kaimanovich

The original definition of amenability given by von Neumann in the highly non-constructive terms of means was later recast by Day using approximately invariant probability measures. Moreover, as it was conjectured by Furstenberg and proved by Kaimanovich–Vershik and Rosenblatt, the amenability of a locally compact group is actually equivalent to the existence of a single probability measure on the group with the property that the sequence of its convolution powers is asymptotically invariant. In the present article we extend this characterization of amenability to measured groupoids. It implies, in particular, that the amenability of a measure class preserving group action is equivalent to the existence of a random environment on the group parameterized by the action space, and such that the tail of the random walk in almost every environment is trivial.


1971 ◽  
Vol 17 (4) ◽  
pp. 311-316 ◽  
Author(s):  
I. Tweddle

In (4) J. F. C. Kingman and A. P. Robertson introduced the idea of thin sets in certain ℒ1 spaces. Thin sets are extreme cases of sets which are not total, and so the problem naturally arises of partitioning a measure space relative to a given set of integrable functions in such a way that on each element of the partition, the set of functions is either thin or total in a sense which is made precise below. In the present note, such partitions are obtained in §2 for finite or totally σ-finite measure spaces. In §3 the basic ideas are reformulated in terms of Radon measures on locally compact spaces, leading to an extension of the results of §2 in this context.


2007 ◽  
Vol 44 (2) ◽  
pp. 265-274
Author(s):  
M. Lashkhrizadeh Bami ◽  
B. Mohammadzadeh

It is shown that there is a locally compact group G which is not inner amenable, but L∞ ( G ) has a topological inner invariant mean which is not a mixed identity. This resolves negatively an open problem raised by Nasr-Isfahani. Motivated by this problem, we also give a characterization of strict inner amenability for certain locally compact groups.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2313
Author(s):  
Maria Luisa Beconcini ◽  
Pietro Croce ◽  
Paolo Formichi ◽  
Filippo Landi ◽  
Benedetta Puccini

The evaluation of the shear behavior of masonry walls is a first fundamental step for the assessment of existing masonry structures in seismic zones. However, due to the complexity of modelling experimental behavior and the wide variety of masonry types characterizing historical structures, the definition of masonry’s mechanical behavior is still a critical issue. Since the possibility to perform in situ tests is very limited and often conflicting with the needs of preservation, the characterization of shear masonry behavior is generally based on reference values of mechanical properties provided in modern structural codes for recurrent masonry categories. In the paper, a combined test procedure for the experimental characterization of masonry mechanical parameters and the assessment of the shear behavior of masonry walls is presented together with the experimental results obtained on three stone masonry walls. The procedure consists of a combination of three different in situ tests to be performed on the investigated wall. First, a single flat jack test is executed to derive the normal compressive stress acting on the wall. Then a double flat jack test is carried out to estimate the elastic modulus. Finally, the proposed shear test is performed to derive the capacity curve and to estimate the shear modulus and the shear strength. The first results obtained in the experimental campaign carried out by the authors confirm the capability of the proposed methodology to assess the masonry mechanical parameters, reducing the uncertainty affecting the definition of capacity curves of walls and consequently the evaluation of seismic vulnerability of the investigated buildings.


2021 ◽  
pp. 1-10
Author(s):  
Narjes Firouzkouhi ◽  
Abbas Amini ◽  
Chun Cheng ◽  
Mehdi Soleymani ◽  
Bijan Davvaz

Inspired by fuzzy hyperalgebras and fuzzy polynomial function (term function), some homomorphism properties of fundamental relation on fuzzy hyperalgebras are conveyed. The obtained relations of fuzzy hyperalgebra are utilized for certain applications, i.e., biological phenomena and genetics along with some elucidatory examples presenting various aspects of fuzzy hyperalgebras. Then, by considering the definition of identities (weak and strong) as a class of fuzzy polynomial function, the smallest equivalence relation (fundamental relation) is obtained which is an important tool for fuzzy hyperalgebraic systems. Through the characterization of these equivalence relations of a fuzzy hyperalgebra, we assign the smallest equivalence relation α i 1 i 2 ∗ on a fuzzy hyperalgebra via identities where the factor hyperalgebra is a universal algebra. We extend and improve the identities on fuzzy hyperalgebras and characterize the smallest equivalence relation α J ∗ on the set of strong identities.


2021 ◽  
Vol 22 (9) ◽  
pp. 4707
Author(s):  
Mariana Lopes ◽  
Sandra Louzada ◽  
Margarida Gama-Carvalho ◽  
Raquel Chaves

(Peri)centromeric repetitive sequences and, more specifically, satellite DNA (satDNA) sequences, constitute a major human genomic component. SatDNA sequences can vary on a large number of features, including nucleotide composition, complexity, and abundance. Several satDNA families have been identified and characterized in the human genome through time, albeit at different speeds. Human satDNA families present a high degree of sub-variability, leading to the definition of various subfamilies with different organization and clustered localization. Evolution of satDNA analysis has enabled the progressive characterization of satDNA features. Despite recent advances in the sequencing of centromeric arrays, comprehensive genomic studies to assess their variability are still required to provide accurate and proportional representation of satDNA (peri)centromeric/acrocentric short arm sequences. Approaches combining multiple techniques have been successfully applied and seem to be the path to follow for generating integrated knowledge in the promising field of human satDNA biology.


Author(s):  
M. Ferrara ◽  
M. Trombetti

AbstractLet G be an abelian group. The aim of this short paper is to describe a way to identify pure subgroups H of G by looking only at how the subgroup lattice $$\mathcal {L}(H)$$ L ( H ) embeds in $$\mathcal {L}(G)$$ L ( G ) . It is worth noticing that all results are carried out in a local nilpotent context for a general definition of purity.


2021 ◽  
Vol 40 (3) ◽  
pp. 5517-5526
Author(s):  
Ömer Kişi

We investigate the concepts of pointwise and uniform I θ -convergence and type of convergence lying between mentioned convergence methods, that is, equi-ideally lacunary convergence of sequences of fuzzy valued functions and acquire several results. We give the lacunary ideal form of Egorov’s theorem for sequences of fuzzy valued measurable functions defined on a finite measure space ( X , M , μ ) . We also introduce the concept of I θ -convergence in measure for sequences of fuzzy valued functions and proved some significant results.


Sign in / Sign up

Export Citation Format

Share Document