scholarly journals Particle-in-cell simulations of laser–plasma interactions at solid densities and relativistic intensities: the role of atomic processes

Author(s):  
D. Wu ◽  
X. T. He ◽  
W. Yu ◽  
S. Fritzsche

Direct numerical simulation of intense laser–solid interactions is still of great challenges, because of the many coupled atomic and plasma processes, such as ionization dynamics, collision among charged particles and collective electromagnetic fields, to name just a few. Here, we develop a new particle-in-cell (PIC) simulation code, which enables us to calculate laser–solid interactions in a more realistic way. This code is able to cover almost ‘all’ the coupled physical processes. As an application of the new code, the generation and transport of energetic electrons in front of and within the solid target when irradiated by intense laser beams are studied. For the considered case, in which laser intensity is $10^{20}~\text{W}\cdot \text{cm}^{-2}$ and pre-plasma scale length in front of the solid is $10~\unicode[STIX]{x03BC}\text{m}$, several quantitative conclusions are drawn: (i) the collisional damping (although it is very weak) can significantly affect the energetic electrons generation in front of the target, (ii) the Bremsstrahlung radiation will be enhanced by 2–3 times when the solid is dramatically heated and ionized, (iii) the ‘cut-off’ electron energy is lowered by an amount of 25% when both collision damping and Bremsstrahlung radiations are included, and (iv) the resistive electromagnetic fields due to Ohmic heating play nonignorable roles and must be taken into account in such interactions.

2018 ◽  
Vol 167 ◽  
pp. 02001 ◽  
Author(s):  
Dean Rusby ◽  
Ross Gray ◽  
Nick Butler ◽  
Rachel Dance ◽  
Graeme Scott ◽  
...  

The interaction of a high-intensity laser with a solid target produces an energetic distribution of electrons that pass into the target. These electrons reach the rear surface of the target creating strong electric potentials that act to restrict the further escape of additional electrons. The measurement of the angle, flux and spectra of the electrons that do escape gives insights to the initial interaction. Here, the escaping electrons have been measured using a differentially filtered image plate stack, from interactions with intensities from mid 1020-1017 W/cm2, where the intensity has been reduced by defocussing to increase the size of the focal spot. An increase in electron flux is initially observed as the intensity is reduced from 4x1020 to 6x1018 W/cm2. The temperature of the electron distribution is also measured and found to be relatively constant. 2D particle-in-cell modelling is used to demonstrate the importance of pre-plasma conditions in understanding these observations.


1999 ◽  
Vol 17 (1) ◽  
pp. 45-58 ◽  
Author(s):  
YUTAKA UESHIMA ◽  
YASUAKI KISHIMOTO ◽  
AKIRA SASAKI ◽  
TOSHIKI TAJIMA

A relativistically intense short laser pulse can produce a large flux of X rays through the interaction with electrons that are driven by its intense electromagnetic fields. Apart from X rays from the high-Z matter irradiation by an intense laser, two main processes, Larmor and Bremsstrahlung radiation, are among the most significant mechanisms for X-ray emission from short-pulse laser irradiation on low-Z matter in the regime of relativistic intensities. We evaluate the power, energy spectrum, brilliance, polarization, and time structure of these X rays. We suggest a few methods that significantly enhance the power of Larmor X rays. Because of the peakedness in the energy spectrum of Larmor X rays, Larmor X rays have important applications.


2009 ◽  
Vol 75 (1) ◽  
pp. 91-98 ◽  
Author(s):  
A. ABUDUREXITI ◽  
T. OKADA ◽  
S. ISHIKAWA

AbstractIn the study of the interaction of ultra-intense laser pulses with thin plasma targets there appears self-generated magnetic fields in the plasma target. The strong magnetic fields were directly measured in the plasma target, and were attributed to a mechanism of non-parallel electron temperature and density gradients. These magnetic fields can become strong enough to significantly affect the plasma transport. The underlying mechanism of the self-generated magnetic fields in the ultra-intense laser–plasma interactions is presented by using a two-dimensional particle-in-cell simulation.


2016 ◽  
Vol 34 (3) ◽  
pp. 440-446
Author(s):  
S. Mirzanejhad ◽  
J. Babaei ◽  
R. Nasrollahpour

AbstractIn the interaction of ultra-short and ultra-intense high contrast laser pulse with a dense foil, accelerating electron sheath is formed. The dynamic of this sheath is obtained according to the ponderomotive force of the laser pulse and restoring electrostatic force of the stationary heavy ions. In the transient dynamics, maximum electron sheath displacement is obtained for different interaction parameters. This maximum displacement has an important effect in the explanation of the electron blow out condition. It is shown numerically that the electron sheath maximum displacement increases with increasing laser pulse amplitude or decreasing its rise time, or by decreasing plasma electron density. Recently, backward MeV acceleration of electrons in the interaction of intense laser pulse with solid targets was observed. The ponderomotive force of the compressed reflected laser pulse includes in our formalism and is used for explanation of the electron's backward acceleration. The threshold values of the interaction parameters for the occurrence of this phenomenon are considered. The electron blow out condition and backward acceleration are accompanied with numerical modeling and 1D3V, particle-in-cell simulation code.


Photonics ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 192
Author(s):  
Theocharis Lamprou ◽  
Rodrigo Lopez-Martens ◽  
Stefan Haessler ◽  
Ioannis Liontos ◽  
Subhendu Kahaly ◽  
...  

Quantum-optical spectrometry is a recently developed shot-to-shot photon correlation-based method, namely using a quantum spectrometer (QS), that has been used to reveal the quantum optical nature of intense laser–matter interactions and connect the research domains of quantum optics (QO) and strong laser-field physics (SLFP). The method provides the probability of absorbing photons from a driving laser field towards the generation of a strong laser–field interaction product, such as high-order harmonics. In this case, the harmonic spectrum is reflected in the photon number distribution of the infrared (IR) driving field after its interaction with the high harmonic generation medium. The method was implemented in non-relativistic interactions using high harmonics produced by the interaction of strong laser pulses with atoms and semiconductors. Very recently, it was used for the generation of non-classical light states in intense laser–atom interaction, building the basis for studies of quantum electrodynamics in strong laser-field physics and the development of a new class of non-classical light sources for applications in quantum technology. Here, after a brief introduction of the QS method, we will discuss how the QS can be applied in relativistic laser–plasma interactions and become the driving factor for initiating investigations on relativistic quantum electrodynamics.


2003 ◽  
Vol 10 (9) ◽  
pp. 3712-3716 ◽  
Author(s):  
H. Habara ◽  
R. Kodama ◽  
Y. Sentoku ◽  
N. Izumi ◽  
Y. Kitagawa ◽  
...  

2021 ◽  
Author(s):  
Dong-Ning Yue ◽  
Min Chen ◽  
Yao Zhao ◽  
Pan-Fei Geng ◽  
Xiao-Hui Yuan ◽  
...  

Abstract Generation of nonlinear structures, such as stimulated Raman side scattering waves, post-solitons and electron vortices, during ultra-short intense laser pulse transportation in near-critical-density (NCD) plasmas are studied by using multi-dimensional particle-in-cell (PIC) simulations. In two-dimensional geometries, both P- and S- polarized laser pulses are used to drive these nonlinear structures and to check the polarization effects on them. In the S-polarized case, the scattered waves can be captured by surrounding plasmas leading to the generation of post-solitons, while the main pulse excites convective electric currents leading to the formation of electron vortices through Kelvin-Helmholtz instability (KHI). In the P-polarized case, the scattered waves dissipate their energy by heating surrounding plasmas. Electron vortices are excited due to the hosing instability of the drive laser. These polarization dependent physical processes are reproduced in two different planes perpendicular to the laser propagation direction in three-dimensional simulation with linearly polarized laser driver. The current work provides inspiration for future experiments of laser-NCD plasma interactions.


2021 ◽  
Vol 51 (9) ◽  
pp. 833-837
Author(s):  
X Shen ◽  
Alexander M Pukhov ◽  
S E Perevalov ◽  
A A Solov'ev

Sign in / Sign up

Export Citation Format

Share Document