scholarly journals Environmental transmission of Clostridioides difficile ribotype 027 at a long-term care facility; an outbreak investigation guided by whole genome sequencing

2018 ◽  
Vol 39 (11) ◽  
pp. 1322-1329 ◽  
Author(s):  
Bradley T. Endres ◽  
Kierra M. Dotson ◽  
Kelley Poblete ◽  
Jacob McPherson ◽  
Chris Lancaster ◽  
...  

AbstractObjectiveThis article describes a CDI outbreak in a long-term care (LTC) facility that used molecular typing techniques and whole-genome sequencing to identify widespread dissemination of the clonal strain in the environment which was successfully removed after terminal cleaning.SettingThis study was conducted in a long-term care facility in Texas.MethodsA recently hospitalized LTC patient was diagnosed with CDI followed shortly thereafter by 7 subsequent CDI cases. A stool specimen was obtained from each patient for culturing and typing. An environmental point-prevalence study of the facility was conducted before and after terminal cleaning of the facility to assess environmental contamination. Cultured isolates were typed using ribotyping, multilocus variant analysis, and whole-genome sequencing.ResultsStool samples were available for 5 of 8 patients; of these specimens, 4 grew toxigenic C. difficile ribotype 027. Of 50 environmental swab samples collected throughout the facility prior to the facility-wide terminal cleaning, 19 (38%) grew toxigenic C. difficile (most commonly ribotype 027, 79%). The terminal cleaning was effective at reducing C. difficile spores in the environment and at eradicating the ribotype 027 strain (P<.001). Using multilocus variance analysis and whole-genome sequencing, clinical and environmental strains were highly related and, in some cases, were identical.ConclusionUsing molecular typing techniques, we demonstrated reduced environmental contamination with toxigenic C. difficile and the eradication of a ribotype 027 clone. These techniques may help direct infection control efforts and decrease the burden of CDI in the healthcare system.

2016 ◽  
Vol 37 (6) ◽  
pp. 685-691 ◽  
Author(s):  
O. Colin Stine ◽  
Shana Burrowes ◽  
Sophia David ◽  
J. Kristie Johnson ◽  
Mary-Claire Roghmann

OBJECTIVETo define how often methicillin-resistant Staphylococcus aureus (MRSA) is spread from resident to resident in long-term care facilities using whole-genome sequencingDESIGNProspective cohort studySETTINGA long-term care facilityPARTICIPANTSElderly residents in a long-term care facilityMETHODSCultures for MRSA were obtained weekly from multiple body sites from residents with known MRSA colonization over 12-week study periods. Simultaneously, cultures to detect MRSA acquisition were obtained weekly from 2 body sites in residents without known MRSA colonization. During the first 12-week cycle on a single unit, we sequenced 8 MRSA isolates per swab for 2 body sites from each of 6 residents. During the second 12-week cycle, we sequenced 30 MRSA isolates from 13 residents with known MRSA colonization and 3 residents who had acquired MRSA colonization.RESULTSMRSA isolates from the same swab showed little genetic variation between isolates with the exception of isolates from wounds. The genetic variation of isolates between body sites on an individual was greater than that within a single body site with the exception of 1 sample, which had 2 unrelated strains among the 8 isolates. In the second cycle, 10 of 16 residents colonized with MRSA (63%) shared 1 of 3 closely related strains. Of the 3 residents with newly acquired MRSA, 2 residents harbored isolates that were members of these clusters.CONCLUSIONSPoint prevalence surveys with whole-genome sequencing of MRSA isolates may detect resident-to-resident transmission more accurately than routine surveillance cultures for MRSA in long-term care facilities.Infect Control Hosp Epidemiol 2016;37:685–691


2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S308-S308
Author(s):  
Ling Yuan Kong ◽  
Leighanne Parkes ◽  
Yves Longtin ◽  
Christina Greenaway ◽  
Jerry Zaharatos ◽  
...  

Abstract Background The coronavirus disease (COVID-19) pandemic has affected residents in long-term care facilities (LTCF) significantly. Understanding transmission dynamics in this setting is crucial to control the spread of COVID-19 in this population. Using whole genome sequencing (WGS) of SARS-CoV-2, we aimed to delineate the points of introduction and transmission pathways in a large LTCF in Quebec, Canada. Methods Between 2020-10-28 and 2021-01-09, COVID-19 cases occurred in 102 residents and 111 HCW at a 387-bed LTCF; cases were distributed in 11 units on 6 floors. As part of outbreak analysis, SARS-CoV-2 isolates underwent WGS using the Oxford Nanopore Minion and the Artic V3 protocol. Lineage attribution and sequence types (ST, within 3 mutations) were assigned based on Pangolin classification and variant analysis. Epidemiologic data including date of positive PCR test, resident room number and HCW work location were collected. Self-reported high-risk exposures were collected by HCW questionnaire via phone interview after consent. Cases and their ST, geo-temporal relations and HCW-reported exposures were examined via network plots and geography-based epidemic curves to infer points of introduction and paths of transmission. Results Of 170 isolates available from 100/102 residents and 70/111 HCW, 130 (76.4%) were successfully sequenced. Phylogenetic analysis revealed 7 separate introductions to the LTCF. Grouping of ST by units was observed, with temporal appearance of ST supporting HCW introduction in 7/11 units. Proportion of phone interview completion was low at 35% (26/70). Few HCW recalled specific high-risk exposures. Recalled exposures supported by genetic linkage revealed potential between-unit introductions from HCW-to-HCW transmission at work and outside the workplace (e.g. carpooling). On one unit, a wandering resident was identified as a likely source of transmission to other residents (Figure 1). Network plot of cases clustered by geographic unit, colour-coded by sequence type. Circles represent residents; addition signs represent healthcare workers. Blue lines represent identified high-risk exposures. Node labels represent floor and unit identifiers; 2 units per floor. Conclusion We demonstrate the complex genomic epidemiology of a multi-unit LTCF outbreak, putting into evidence the importance of a multi-faceted approach to limit transmission. This analysis highlights the utility of using WGS to uncover unsuspected transmission routes, such as HCW contact outside work, which can prompt new infection control measures. Disclosures All Authors: No reported disclosures


2021 ◽  
Vol 9 (9) ◽  
pp. 1985
Author(s):  
Alessandra Piccirilli ◽  
Sabrina Cherubini ◽  
Anna Azzini ◽  
Evelina Tacconelli ◽  
Giuliana Lo Cascio ◽  
...  

K. pneumoniae (KPN) is one of the widest spread bacteria in which combined resistance to several antimicrobial groups is frequent. The most common β-lactamases found in K. pneumoniae are class A carbapenemases, both chromosomal-encoded (i.e., NMCA, IMI-1) and plasmid-encoded (i.e., GES-enzymes, IMI-2), VIM, IMP, NDM, OXA-48, and extended-spectrum β-lactamases (ESBLs) such as CTX-M enzymes. In the present study, a total of 68 carbapenem-resistant KPN were collected from twelve long-term care facilities (LTCFs) in the Northern Italian region. The whole-genome sequencing (WGS) of each KPN strain was determined using a MiSeq Illumina sequencing platform and analysed by a bacterial analysis pipeline (BAP) tool. The WGS analysis showed the prevalence of ST307, ST512, and ST37 as major lineages diffused among the twelve LTCFs. The other lineages found were: ST11, ST16, ST35, ST253, ST273, ST321, ST416, ST1519, ST2623, and ST3227. The blaKPC-2, blaKPC-3, blaKPC-9, blaSHV-11, blaSHV-28, blaCTX-M-15, blaOXA-1, blaOXA-9, blaOXA-23, qnrS1, qnrB19, qnrB66, aac(6′)-Ib-cr, and fosA were the resistance genes widespread in most LTCFs. In this study, we demonstrated the spreading of thirteen KPN lineages among the LTCFs. Additionally, KPC carbapenemases are the most widespread β-lactamase.


2021 ◽  
Vol 36 (3) ◽  
pp. 287-298
Author(s):  
Jonathan Bergman ◽  
Marcel Ballin ◽  
Anna Nordström ◽  
Peter Nordström

AbstractWe conducted a nationwide, registry-based study to investigate the importance of 34 potential risk factors for coronavirus disease 2019 (COVID-19) diagnosis, hospitalization (with or without intensive care unit [ICU] admission), and subsequent all-cause mortality. The study population comprised all COVID-19 cases confirmed in Sweden by mid-September 2020 (68,575 non-hospitalized, 2494 ICU hospitalized, and 13,589 non-ICU hospitalized) and 434,081 randomly sampled general-population controls. Older age was the strongest risk factor for hospitalization, although the odds of ICU hospitalization decreased after 60–69 years and, after controlling for other risk factors, the odds of non-ICU hospitalization showed no trend after 40–49 years. Residence in a long-term care facility was associated with non-ICU hospitalization. Male sex and the presence of at least one investigated comorbidity or prescription medication were associated with both ICU and non-ICU hospitalization. Three comorbidities associated with both ICU and non-ICU hospitalization were asthma, hypertension, and Down syndrome. History of cancer was not associated with COVID-19 hospitalization, but cancer in the past year was associated with non-ICU hospitalization, after controlling for other risk factors. Cardiovascular disease was weakly associated with non-ICU hospitalization for COVID-19, but not with ICU hospitalization, after adjustment for other risk factors. Excess mortality was observed in both hospitalized and non-hospitalized COVID-19 cases. These results confirm that severe COVID-19 is related to age, sex, and comorbidity in general. The study provides new evidence that hypertension, asthma, Down syndrome, and residence in a long-term care facility are associated with severe COVID-19.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mitch van Hensbergen ◽  
Casper D. J. den Heijer ◽  
Petra Wolffs ◽  
Volker Hackert ◽  
Henriëtte L. G. ter Waarbeek ◽  
...  

Abstract Background The Dutch province of Limburg borders the German district of Heinsberg, which had a large cluster of COVID-19 cases linked to local carnival activities before any cases were reported in the Netherlands. However, Heinsberg was not included as an area reporting local or community transmission per the national case definition at the time. In early March, two residents from a long-term care facility (LTCF) in Sittard, a Dutch town located in close vicinity to the district of Heinsberg, tested positive for COVID-19. In this study we aimed to determine whether cross-border introduction of the virus took place by analysing the LTCF outbreak in Sittard, both epidemiologically and microbiologically. Methods Surveys and semi-structured oral interviews were conducted with all present LTCF residents by health care workers during regular points of care for information on new or unusual signs and symptoms of disease. Both throat and nasopharyngeal swabs were taken from residents suspect of COVID-19, based on regional criteria, for the detection of SARS-CoV-2 by Real-time Polymerase Chain Reaction. Additionally, whole genome sequencing was performed using a SARS-CoV-2 specific amplicon-based Nanopore sequencing approach. Moreover, twelve random residents were sampled for possible asymptomatic infections. Results Out of 99 residents, 46 got tested for COVID-19. Out of the 46 tested residents, nineteen (41%) tested positive for COVID-19, including 3 asymptomatic residents. CT-values for asymptomatic residents seemed higher compared to symptomatic residents. Eleven samples were sequenced, along with three random samples from COVID-19 patients hospitalized in the regional hospital at the time of the LTCF outbreak. All samples were linked to COVID-19 cases from the cross-border region of Heinsberg, Germany. Conclusions Sequencing combined with epidemiological data was able to virtually prove cross-border transmission at the start of the Dutch COVID-19 epidemic. Our results highlight the need for cross-border collaboration and adjustment of national policy to emerging region-specific needs along borders in order to establish coordinated implementation of infection control measures to limit the spread of COVID-19.


Sign in / Sign up

Export Citation Format

Share Document