Expansion of Feral Cereal Rye (Secale cereale L.) on Non-crop Hillsides in Northern Utah

2017 ◽  
Vol 10 (01) ◽  
pp. 26-32 ◽  
Author(s):  
Kyle C. Roerig ◽  
Corey V. Ransom

Feral cereal rye is an aggressive, persistent winter annual grass. Although feral rye has been documented as a weed in Utah cropland for many years, it has only recently been described as a weed of natural areas in Utah. After feral rye was observed on hillside locations where it had not previously been present, research was conducted to evaluate expansion rates in isolated patches and on a landscape scale. Individual patch measurements indicated expansion rates of 17%, 42%, 44%, and 112% in 2009. The landscape expansion rates were 1%, 4%, 8%, 21%, and 50% in the same year. The spread of feral rye appears to have occurred primarily on south- to west-facing slopes where the density and diversity of native species is limited. The expansion of feral rye into natural, undisturbed areas indicates that this species should be closely monitored. The relatively short seed longevity and current small infestations make it a good candidate for early detection/rapid response efforts.

2019 ◽  
Vol 34 (2) ◽  
pp. 266-271 ◽  
Author(s):  
Neeta Soni ◽  
Scott J. Nissen ◽  
Philip Westra ◽  
Jason K. Norsworthy ◽  
Michael J. Walsh ◽  
...  

AbstractDowny brome, feral rye, and jointed goatgrass are problematic winter annual grasses in central Great Plains winter wheat production. Integrated control strategies are needed to manage winter annual grasses and reduce selection pressure exerted on these weed populations by the limited herbicide options currently available. Harvest weed-seed control (HWSC) methods aim to remove or destroy weed seeds, thereby reducing seed-bank enrichment at crop harvest. An added advantage is the potential to reduce herbicide-resistant weed seeds that are more likely to be present at harvest, thereby providing a nonchemical resistance-management strategy. Our objective was to assess the potential for HWSC of winter annual grass weeds in winter wheat by measuring seed retention at harvest and destruction percentage in an impact mill. During 2015 and 2016, 40 wheat fields in eastern Colorado were sampled. Seed retention was quantified and compared per weed species by counting seed retained above the harvested fraction of the wheat upper canopy (15 cm and above), seed retained below 15 cm, and shattered seed on the soil surface at wheat harvest. A stand-mounted impact mill device was used to determine the percent seed destruction of grass weed species in processed wheat chaff. Averaged across both years, seed retention (±SE) was 75% ± 2.9%, 90% ± 1.7%, and 76% ± 4.3% for downy brome, feral rye, and jointed goatgrass, respectively. Seed retention was most variable for downy brome, because 59% of the samples had at least 75% seed retention, whereas the proportions for feral rye and jointed goatgrass samples with at least 75% seed retention were 93% and 70%, respectively. Weed seed destruction percentages were at least 98% for all three species. These results suggest HWSC could be implemented as an integrated strategy for winter annual grass management in central Great Plains winter wheat cropping systems.


2004 ◽  
Vol 18 (4) ◽  
pp. 924-930 ◽  
Author(s):  
Patrick W. Geier ◽  
Phillip W. Stahlman ◽  
Anthony D. White ◽  
Stephen D. Miller ◽  
Craig M. Alford ◽  
...  

Field experiments were conducted at five locations in Kansas, Nebraska, and Wyoming to determine the effects of imazamox rate and application timing on winter annual grass control and crop response in imidazolinone-tolerant winter wheat. Imazamox at 35, 44, or 53 g ai/ha applied early-fall postemergence (EFP), late-fall postemergence, early-spring postemergence (ESP), or late-spring postemergence (LSP) controlled jointed goatgrass at least 95% in all experiments. Feral rye control with imazamox was 95 to 99%, regardless of rate or application timing at Hays, KS, in 2001. Feral rye control at Sidney, NE, and Torrington, WY, was highest (78 to 85%) with imazamox at 44 or 53 g/ha. At Sidney and Torrington, feral rye control was greatest when imazamox was applied EFP. Imazamox stunted wheat <10% in two experiments at Torrington, but EFP or LSP herbicide treatments in the Sidney experiment and ESP or LSP treatments in two Hays experiments caused moderate (12 to 34%) wheat injury. Wheat injury increased as imazamox rate increased. Wheat receiving imazamox LSP yielded less grain than wheat treated at other application timings in each Hays experiment and at Sidney in 2001. No yield differences occurred in one Torrington experiment. However, yields generally decreased as imazamox application timing was delayed in the other Torrington experiment. Generally, imazamox applied in the fall provided the greatest weed control, caused the least wheat injury, and maximized wheat yield.


2012 ◽  
Vol 5 (4) ◽  
pp. 436-442 ◽  
Author(s):  
Roger L. Sheley ◽  
Edward A. Vasquez ◽  
Anna-Marie Chamberlain ◽  
Brenda S. Smith

AbstractProducers facing infestations of invasive annual grasses regularly voice the need for practical revegetation strategies that can be applied across broad landscapes. Our objective was to determine the potential for scaling up the single-entry approach for revegetating medusahead-infested rangeland to broader, more heterogeneous landscape-scale revegetation of winter annual grass–infested rangeland. We hypothesized, when applied on a highly variable landscape scale, the combination of imazapic and seeding would provide highest abundance of perennial grasses and lowest amount of annual grasses. Treatments included a control, seeding of crested wheatgrass (‘Hycrest’) and Sandberg's bluegrass, spraying (60 g ai ha−1 imazapic), and a simultaneously applied combination of spraying and seeding. The HyCrest and Sandberg's bluegrass seeding rates were 19 and 3.4 kg ha−1, respectively. The treatments were applied to large plots (1.4 to 8 ha) and replicated five times, with each replication located in different watersheds throughout southeastern Oregon. This study shows that the single-entry approach can be scaled up to larger landscapes, but variation within establishment areas will likely be high. This procedure should reduce the costs over multientry treatment applications and make revegetating annual grass–infested rangeland across landscapes more affordable.


2020 ◽  
Vol 31 (2) ◽  
pp. 57-60
Author(s):  
Shannon L. Clark

Invasive winter annual grasses are one of the largest threats to the arid and semiarid rangelands and wildlands in the Intermountain West of North America. The most impactful species include downy brome (Bromus tectorum), medusahead (Taeniatherum caput-medusae), ventenata (Ventenata dubia), and to a lesser extent Japanese brome (Bromus japonicus), feral rye (Secale cereale), and jointed goatgrass (Aegilops cylindrica). These winter annuals can germinate in the fall, winter or early spring, exploiting soil moisture and nutrients before native plant communities begin active growth in the spring. These characteristics impart a competitive advantage in the perennial grass dominated natural landscapes of the Intermountain West. Downy brome, a winter annual grass native to Eurasia, is the most widespread invasive species in the western US covering an estimated 22 million ha and a projected 14% annual spread rate. Invasive winter annuals negatively impact these ecosystems by depleting soil moisture and nutrients, reducing native plant productivity and diversity, altering fire frequency, and diminishing pollinator and wildlife habitat. Large amounts of litter which act as a fuel source are left after these grasses senesce early in the summer, greatly increasing the frequency and spread of wildfires in invaded areas. Historically, fire frequency in the 41 million ha sagebrush steppe occurred every 60 to 110 years, but this interval has been shortened to less than every five years since the introduction of invasive annual grasses. Annual grasses quickly (re)invade after these fires while sagebrush (Artemisia spp.), the dominant vegetation type in the sagebrush steppe, can take decades to recover. Therefore, the altered fire regime has resulted in a substantial loss of sagebrush and converted millions of hectares into monocultures of winter annual grass. This altered fire regime also negatively impacted the abundance of small mammals, birds, larger browsing mammals, and pollinating insects in the sagebrush steppe. Managing the weed seedbank is the key to long-term control of invasive winter annual grasses on rangelands and wildlands. Past herbicides have provided adequate short-term control but have often failed due to annual grasses reinvading from the soil seedbank. Indaziflam is a new tool for land managers to achieve multi-year control of the annual grass seedbank while promoting restoration of native species. As wildlife and pollinator habitat continue to be degraded and fragmented through development and agricultural production, indaziflam is a viable option for restoring the rangelands and wildlands impacted by winter annual grasses in the Intermountain West that serve as critical habitat areas.


2005 ◽  
Vol 19 (3) ◽  
pp. 653-658 ◽  
Author(s):  
Thomas A. Monaco ◽  
Travis M. Osmond ◽  
Steven A. Dewey

Medusahead is an aggressive, nonnative, winter annual grass that infests rangelands in the western United States. Its ability to rapidly spread, outcompete native vegetation, and destroy forage potential is a primary concern for landowners and land managers exposed to this weed. Prescribed burns were conducted at a low- and high-litter site in northern Utah prior to conducting experiments to evaluate the effects of fall and spring applications of sulfometuron at 39 or 79 g ai/ha and imazapic at 70 or 140 g ai/ha on medusahead and associated perennial grasses, annual and perennial forbs, and bare ground cover. Large differences in pretreatment medusahead litter between the sites resulted in less surface area burning at the low-litter site (∼10%) compared to the high-litter site (∼80%). Higher herbicide rates significantly increased medusahead control and bare ground cover; however, this rate affect largely depended on site, season, and herbicide. The low- and high-litter sites did not differ significantly in perennial grass cover 2 yr after burning. Annual forb cover was greater, but perennial forb cover was lower at the low-litter site compared to the high-litter site. Several treatment combinations were identified as having the potential to maintain greater than 50% medusahead control in the second year after herbicide applications. These results collectively demonstrate that potential exists to successfully control medusahead and produce a window of opportunity to reintroduce a greater abundance of perennial species back into the plant community via seeding.


2000 ◽  
Vol 15 (3) ◽  
pp. 122-128 ◽  
Author(s):  
B. J. Bentz ◽  
A. S. Munson

Abstract The spruce beetle is a widely dispersed, native bark beetle that attacks and kills North American spruces. We describe a project that was initiated to suppress an endemic spruce beetle population in an isolated 1000 ac area of spruce in northeastern Utah. Techniques used included baited pheromone traps, selective harvesting and burning of infested trees, and trap trees. Over the 3 yr period of monitoring, the number of standing, currently infested spruce trees was reduced 91%. Field surveys and data trends, in comparison with a nearby spruce beetle population that continued to increase, indicate that the treatments played a major role in decreasing the trend of spruce beetle-infested trees during the study period. This combination of suppression techniques was successful due to the isolated nature of the spruce stands, early detection of the beetle population, accessibility of the stands, and coordinated efforts of local, state, and federal agencies. West. J. Appl. For. 15(3):122-128.


1999 ◽  
Vol 13 (1) ◽  
pp. 120-126 ◽  
Author(s):  
Oleg Daugovish ◽  
Drew J. Lyon ◽  
David D. Baltensperger

Field studies were conducted from 1990 through 1997 to evaluate the long-term effect of 2- and 3-yr rotations on the control of downy brome, jointed goatgrass, and feral rye in winter wheat. At the completion of the study, jointed goatgrass and feral rye densities averaged 8 plants/m2and < 0.1 plant/m2for the 2- and 3-yr rotations, respectively. Downy brome densities averaged < 0.5 plant/m2for both the 2- and 3-yr rotations, with no treatment differences observed. Winter annual grasses were not eradicated after two cycles of the 3-yr rotations, but weed densities were reduced 10-fold compared to densities after one cycle and more than 100-fold compared with the 2-yr rotations. Wheat grain contamination with dockage and foreign material followed a similar trend. The 3-yr rotations were economically competitive with 2-yr rotations and provided superior control of the winter annual grass weeds.


Weed Science ◽  
2018 ◽  
Vol 66 (3) ◽  
pp. 310-316 ◽  
Author(s):  
Nevin C. Lawrence ◽  
Amber L. Hauvermale ◽  
Ian C. Burke

AbstractDowny brome (Bromus tectorumL.) is a widely distributed invasive winter annual grass across western North America.Bromus tectorumphenology can vary considerably among populations, and those differences are considered adaptively significant. A consensus hypothesis in the literature attributes the majority of observed differences inB. tectorumphenology to differing vernalization requirements among populations. A series of greenhouse experiments were conducted to identify differences inB. tectorumvernalization requirements and link vernalization to expression of annual false-brome [Brachypodium distachyon(L.) P. Beauv.]-derived vernalization gene homolog (BdVRN1). Results from this study indicate that variation in time to flowering is partially governed by differing vernalization requirements and that flowering is linked to the expression ofBdVRN1.


2011 ◽  
Vol 4 (1) ◽  
pp. 115-124 ◽  
Author(s):  
Scott R. Abella ◽  
Donovan J. Craig ◽  
Lindsay P. Chiquoine ◽  
Kathryn A. Prengaman ◽  
Sarah M. Schmid ◽  
...  

AbstractThe interactions between native and exotic species occur on a continuum from facilitative to competitive. A growing thrust in invasive species science is differentiating where particular native species occur along this continuum, with practical implications for identifying species that might reduce the invasibility of ecosystems. We used a greenhouse experiment to develop a competitive hierarchy of 27 native species with red brome, an invasive annual grass in the arid lands of the southwestern United States, and a field study to assess in situ responses of brome to native perennial species in the Mojave Desert. Native species most competitive with brome in the competition experiment included the annuals Esteve's pincushion and western fiddleneck and the perennials eastern Mojave buckwheat, sweetbush, and brittlebush, which reduced brome biomass to 49 to 70% of its grown-alone amount. There was no clear difference in competitive abilities with brome between annual and perennial natives, and competiveness was not strongly correlated (r = 0.15) with the biomass of the native species. In the field, sweetbush and brittlebush supported among the least cover of brome, suggesting congruence of the strong early competitive abilities of these species with in situ patterns of brome distribution. At the other extreme, brome attained its highest average cover (19%) below littleleaf ratany, significantly greater than all but 3 of the 16 species evaluated. Cover by brome was only weakly related (r = 0.19) to the area of the perennial canopy, suggesting that factors other than the sizes of perennial plants were linked to differences in brome cover among species. Results suggest that (1) interactions with brome differ substantially among native species, (2) these interactions are not as closely linked to biomass production as in more temperate regions, and (3) there is potential for identifying native species that can reduce invasion of desert ecosystems.


1995 ◽  
Vol 83 (2) ◽  
pp. 177 ◽  
Author(s):  
P. D. Carey ◽  
A. R. Watkinson ◽  
F. F. O. Gerard
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document