Using Herbicides to Restore Native Species and Improve Habitat on Rangelands and Wildlands

2020 ◽  
Vol 31 (2) ◽  
pp. 57-60
Author(s):  
Shannon L. Clark

Invasive winter annual grasses are one of the largest threats to the arid and semiarid rangelands and wildlands in the Intermountain West of North America. The most impactful species include downy brome (Bromus tectorum), medusahead (Taeniatherum caput-medusae), ventenata (Ventenata dubia), and to a lesser extent Japanese brome (Bromus japonicus), feral rye (Secale cereale), and jointed goatgrass (Aegilops cylindrica). These winter annuals can germinate in the fall, winter or early spring, exploiting soil moisture and nutrients before native plant communities begin active growth in the spring. These characteristics impart a competitive advantage in the perennial grass dominated natural landscapes of the Intermountain West. Downy brome, a winter annual grass native to Eurasia, is the most widespread invasive species in the western US covering an estimated 22 million ha and a projected 14% annual spread rate. Invasive winter annuals negatively impact these ecosystems by depleting soil moisture and nutrients, reducing native plant productivity and diversity, altering fire frequency, and diminishing pollinator and wildlife habitat. Large amounts of litter which act as a fuel source are left after these grasses senesce early in the summer, greatly increasing the frequency and spread of wildfires in invaded areas. Historically, fire frequency in the 41 million ha sagebrush steppe occurred every 60 to 110 years, but this interval has been shortened to less than every five years since the introduction of invasive annual grasses. Annual grasses quickly (re)invade after these fires while sagebrush (Artemisia spp.), the dominant vegetation type in the sagebrush steppe, can take decades to recover. Therefore, the altered fire regime has resulted in a substantial loss of sagebrush and converted millions of hectares into monocultures of winter annual grass. This altered fire regime also negatively impacted the abundance of small mammals, birds, larger browsing mammals, and pollinating insects in the sagebrush steppe. Managing the weed seedbank is the key to long-term control of invasive winter annual grasses on rangelands and wildlands. Past herbicides have provided adequate short-term control but have often failed due to annual grasses reinvading from the soil seedbank. Indaziflam is a new tool for land managers to achieve multi-year control of the annual grass seedbank while promoting restoration of native species. As wildlife and pollinator habitat continue to be degraded and fragmented through development and agricultural production, indaziflam is a viable option for restoring the rangelands and wildlands impacted by winter annual grasses in the Intermountain West that serve as critical habitat areas.

1996 ◽  
Vol 10 (4) ◽  
pp. 870-875 ◽  
Author(s):  
Patrick W. Geier ◽  
Phillip W. Stahlman

Greenhouse studies determined the dose-responses of cheat, downy brome, Japanese brome, jointed goatgrass, and winter wheat to preplant-incorporated MON 37500 and its residual effects on kochia. Concentrations of MON 37500 up to 60 ppbw did not affect winter wheat. MON 37500 did not prevent weed emergence, but increasingly inhibited weed growth as the dose was increased up to about 20 ppbw. GR50values were 16, 16, 11, and 31 ppbw for cheat, downy brome, Japanese brome, and jointed goatgrass, respectively. Japanese brome was more susceptible than cheat or downy brome, and jointed goatgrass tolerated two to three times more MON 37500 than theBromusspecies. Plant dry weights of kochia seeded after removal of the winter annual grasses decreased with increasing initial MON 37500 concentrations up to 20 ppbw. Kochia density was influenced by which winter annual grass was grown previously.


Fire ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 16
Author(s):  
Chris Bowman-Prideaux ◽  
Beth A. Newingham ◽  
Eva K. Strand

Wildfire size and frequency have increased in the western United States since the 1950s, but it is unclear how seeding treatments have altered fire regimes in arid steppe systems. We analyzed how the number of fires since 1955 and the fire return interval and frequency between 1995 and 2015 responded to seeding treatments, anthropogenic features, and abiotic landscape variables in Wyoming big sagebrush ecosystems. Arid sites had more fires than mesic sites and fire return intervals were shortest on locations first treated between 1975 and 2000. Sites drill seeded before the most recent fire had fewer, less frequent fires with longer fire return intervals (15–20 years) than aerially seeded sites (intervals of 5–8 years). The response of fire regime variables at unseeded sites fell between those of aerial and drill seeding. Increased moisture availability resulted in decreased fire frequency between 1994 and 2014 and the total number of fires since 1955 on sites with unseeded and aerially pre-fire seeding, but fire regimes did not change when drill seeded. Greater annual grass biomass likely contributed to frequent fires in the arid region. In Wyoming big sagebrush steppe, drill seeding treatments reduced wildfire risk relative to aerial seeded or unseeded sites.


2012 ◽  
Vol 5 (4) ◽  
pp. 436-442 ◽  
Author(s):  
Roger L. Sheley ◽  
Edward A. Vasquez ◽  
Anna-Marie Chamberlain ◽  
Brenda S. Smith

AbstractProducers facing infestations of invasive annual grasses regularly voice the need for practical revegetation strategies that can be applied across broad landscapes. Our objective was to determine the potential for scaling up the single-entry approach for revegetating medusahead-infested rangeland to broader, more heterogeneous landscape-scale revegetation of winter annual grass–infested rangeland. We hypothesized, when applied on a highly variable landscape scale, the combination of imazapic and seeding would provide highest abundance of perennial grasses and lowest amount of annual grasses. Treatments included a control, seeding of crested wheatgrass (‘Hycrest’) and Sandberg's bluegrass, spraying (60 g ai ha−1 imazapic), and a simultaneously applied combination of spraying and seeding. The HyCrest and Sandberg's bluegrass seeding rates were 19 and 3.4 kg ha−1, respectively. The treatments were applied to large plots (1.4 to 8 ha) and replicated five times, with each replication located in different watersheds throughout southeastern Oregon. This study shows that the single-entry approach can be scaled up to larger landscapes, but variation within establishment areas will likely be high. This procedure should reduce the costs over multientry treatment applications and make revegetating annual grass–infested rangeland across landscapes more affordable.


1999 ◽  
Vol 13 (1) ◽  
pp. 120-126 ◽  
Author(s):  
Oleg Daugovish ◽  
Drew J. Lyon ◽  
David D. Baltensperger

Field studies were conducted from 1990 through 1997 to evaluate the long-term effect of 2- and 3-yr rotations on the control of downy brome, jointed goatgrass, and feral rye in winter wheat. At the completion of the study, jointed goatgrass and feral rye densities averaged 8 plants/m2and < 0.1 plant/m2for the 2- and 3-yr rotations, respectively. Downy brome densities averaged < 0.5 plant/m2for both the 2- and 3-yr rotations, with no treatment differences observed. Winter annual grasses were not eradicated after two cycles of the 3-yr rotations, but weed densities were reduced 10-fold compared to densities after one cycle and more than 100-fold compared with the 2-yr rotations. Wheat grain contamination with dockage and foreign material followed a similar trend. The 3-yr rotations were economically competitive with 2-yr rotations and provided superior control of the winter annual grass weeds.


Weed Science ◽  
2018 ◽  
Vol 66 (3) ◽  
pp. 310-316 ◽  
Author(s):  
Nevin C. Lawrence ◽  
Amber L. Hauvermale ◽  
Ian C. Burke

AbstractDowny brome (Bromus tectorumL.) is a widely distributed invasive winter annual grass across western North America.Bromus tectorumphenology can vary considerably among populations, and those differences are considered adaptively significant. A consensus hypothesis in the literature attributes the majority of observed differences inB. tectorumphenology to differing vernalization requirements among populations. A series of greenhouse experiments were conducted to identify differences inB. tectorumvernalization requirements and link vernalization to expression of annual false-brome [Brachypodium distachyon(L.) P. Beauv.]-derived vernalization gene homolog (BdVRN1). Results from this study indicate that variation in time to flowering is partially governed by differing vernalization requirements and that flowering is linked to the expression ofBdVRN1.


Botany ◽  
2016 ◽  
Vol 94 (6) ◽  
pp. 481-491 ◽  
Author(s):  
Catherine A. Gehring ◽  
Michaela Hayer ◽  
Lluvia Flores-Rentería ◽  
Andrew F. Krohn ◽  
Egbert Schwartz ◽  
...  

Invasive, non-native plant species can alter soil microbial communities in ways that contribute to their persistence. While most studies emphasize mycorrhizal fungi, invasive plants also may influence communities of dark septate fungi (DSF), which are common root endophytes that can function like mycorrhizas. We tested the hypothesis that a widespread invasive plant in the western United States, cheatgrass (Bromus tectorum L.), influenced the abundance and community composition of DSF by examining the roots and rhizosphere soils of cheatgrass and two native plant species in cheatgrass-invaded and noninvaded areas of sagebrush steppe. We focused on cheatgrass because it is negatively affected by mycorrhizal fungi and colonized by DSF. We found that DSF root colonization and operational taxonomic unit (OTU) richness were significantly higher in sagebrush (Artemisia tridentata Nutt.) and rice grass (Achnatherum hymenoides (Roem. & Schult.) Barkworth) from invaded areas than noninvaded areas. Cheatgrass roots had similar levels of DSF colonization and OTU richness as native plants. The community composition of DSF varied with invasion in the roots and soils of native species and among the roots of the three plant species in the invaded areas. The substantial changes in DSF we observed following cheatgrass invasion argue for comparative studies of DSF function in native and non-native plant species.


2017 ◽  
Vol 10 (01) ◽  
pp. 26-32 ◽  
Author(s):  
Kyle C. Roerig ◽  
Corey V. Ransom

Feral cereal rye is an aggressive, persistent winter annual grass. Although feral rye has been documented as a weed in Utah cropland for many years, it has only recently been described as a weed of natural areas in Utah. After feral rye was observed on hillside locations where it had not previously been present, research was conducted to evaluate expansion rates in isolated patches and on a landscape scale. Individual patch measurements indicated expansion rates of 17%, 42%, 44%, and 112% in 2009. The landscape expansion rates were 1%, 4%, 8%, 21%, and 50% in the same year. The spread of feral rye appears to have occurred primarily on south- to west-facing slopes where the density and diversity of native species is limited. The expansion of feral rye into natural, undisturbed areas indicates that this species should be closely monitored. The relatively short seed longevity and current small infestations make it a good candidate for early detection/rapid response efforts.


2014 ◽  
Vol 7 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Phil S. Allen ◽  
Susan E. Meyer

AbstractEcological restoration of shrub–steppe communities in the western United States is often hampered by invasion of exotic annual grasses during the process. An important question is how to create restored communities that can better resist reinvasion by these weeds. One hypothesis is that communities comprised of species that are functionally similar to the invader will best resist invasion, while an alternative hypothesis is that structurally more complex and diverse communities will result in more effective competitive exclusion. In this field experiment, we examined the effects of restored community structure on the invasion success of three annual grass weeds (downy brome, jointed goatgrass, and cereal rye). We created replicated community plots that varied in species composition, structural complexity and density, then seeded in annual grass weeds and measured their biomass and seed production the following year, and their cover after 1 and 3 yr. Annual grass weeds were not strongly suppressed by any of the restored communities, indicating that it was difficult for native species to completely capture available resources and exclude annual grass weeds in the first years after planting. Perennial grass monocultures, particularly of the early seral grass bottlebrush squirreltail, were the most highly invaded communities, while structurally complex and diverse mixtures of shrubs (big sagebrush, rubber rabbitbrush), perennial grasses (bluebunch wheatgrass and bottlebrush squirreltail) and forbs (Lewis flax, Utah sweetvetch, hairy golden aster, gooseberryleaf globemallow) were more resistant to invasion. These results suggest that restoration of sagebrush steppe communities resistant to annual grass invasion benefits from higher species diversity; significant reduction of weed propagule pressure prior to restoration may be required.


1998 ◽  
Vol 12 (3) ◽  
pp. 478-483 ◽  
Author(s):  
R. L. Anderson

Producers rely on cultural practices to manage downy brome, jointed goatgrass, and feral rye in winter wheat because there are no effective herbicides for in-crop control. This study characterized seedling emergence, growth, and development of these winter annual grasses, with the goal of suggesting or improving cultural control strategies. Feral rye seedlings emerged within 4 wk, whereas downy brome and jointed goatgrass seedlings emerged over a 10-wk period. Emergence patterns of these grasses suggest that delay of winter wheat planting may be effective in reducing feral rye densities, but this strategy most likely will be ineffective with downy brome or jointed goatgrass. Downy brome began anthesis 1 to 2 wk earlier than the other two grasses and winter wheat. Both downy brome and jointed goatgrass were shorter than winter wheat during the growing season, whereas feral rye was at least as tall as wheat. Producers mow infested wheat to prevent weed seed production, but this practice may not be effective with jointed goatgrass and downy brome because of their short stature and downy brome's earlier development. Conversely, mowing has potential in preventing feral rye seed production. The grasses produced between 340 and 770 seeds/ plant.


2019 ◽  
Vol 34 (2) ◽  
pp. 266-271 ◽  
Author(s):  
Neeta Soni ◽  
Scott J. Nissen ◽  
Philip Westra ◽  
Jason K. Norsworthy ◽  
Michael J. Walsh ◽  
...  

AbstractDowny brome, feral rye, and jointed goatgrass are problematic winter annual grasses in central Great Plains winter wheat production. Integrated control strategies are needed to manage winter annual grasses and reduce selection pressure exerted on these weed populations by the limited herbicide options currently available. Harvest weed-seed control (HWSC) methods aim to remove or destroy weed seeds, thereby reducing seed-bank enrichment at crop harvest. An added advantage is the potential to reduce herbicide-resistant weed seeds that are more likely to be present at harvest, thereby providing a nonchemical resistance-management strategy. Our objective was to assess the potential for HWSC of winter annual grass weeds in winter wheat by measuring seed retention at harvest and destruction percentage in an impact mill. During 2015 and 2016, 40 wheat fields in eastern Colorado were sampled. Seed retention was quantified and compared per weed species by counting seed retained above the harvested fraction of the wheat upper canopy (15 cm and above), seed retained below 15 cm, and shattered seed on the soil surface at wheat harvest. A stand-mounted impact mill device was used to determine the percent seed destruction of grass weed species in processed wheat chaff. Averaged across both years, seed retention (±SE) was 75% ± 2.9%, 90% ± 1.7%, and 76% ± 4.3% for downy brome, feral rye, and jointed goatgrass, respectively. Seed retention was most variable for downy brome, because 59% of the samples had at least 75% seed retention, whereas the proportions for feral rye and jointed goatgrass samples with at least 75% seed retention were 93% and 70%, respectively. Weed seed destruction percentages were at least 98% for all three species. These results suggest HWSC could be implemented as an integrated strategy for winter annual grass management in central Great Plains winter wheat cropping systems.


Sign in / Sign up

Export Citation Format

Share Document