scholarly journals A constitutive model with microstructure evolution for flow of rate-independent granular materials

2011 ◽  
Vol 682 ◽  
pp. 590-616 ◽  
Author(s):  
JIN SUN ◽  
SANKARAN SUNDARESAN

A constitutive model is developed for the complex rheology of rate-independent granular materials. The closures for the pressure and the macroscopic friction coefficient are linked to microstructure through evolution equations for coordination number and fabric. The material constants in the model are functions of particle-level properties and are calibrated using data generated through simulations of steady and unsteady simple shear using the discrete element method (DEM). This model is verified against DEM simulations at complex loading conditions.

Author(s):  
Wei-Tao Wu ◽  
Nadine Aubry ◽  
Mehrdad Massoudi

In this paper we use a non-linear constitutive model for flowing granular materials developed by Massoudi [1] which not only considers the effect of volume fraction but also has a viscosity which is shear rate dependent. This model is a generalization of Reiner’s model [2] derived for wet sand. Specifically we study the simple shear flow of granular materials between two horizontal plates, with the lower plate fixed and the upper plate moving at a constant speed. Numerical solutions are presented for various dimensionless parameters.


2013 ◽  
Author(s):  
Juan Carlos Quezada ◽  
Gilles Saussine ◽  
Pierre Breul ◽  
Farhang Radjai

Author(s):  
Y. Kostenko ◽  
K. Naumenko

Many power plant components and joint connections are subjected to complex thermo-mechanical loading paths under severe temperature environments over a long period. An important part in the lifetime assessment is the reliable prediction of stress relaxation using improved creep modeling to avoid possible integrity or functionality issues and malfunction in such components. The aim of this work is to analyze the proposed constitutive model for advanced high chromium steels with the goal of predicting stress relaxation over the long term. The evolution equations of the constitutive model for inelastic material behavior are introduced to account for hardening and softening phenomena. The material properties were identified for 9–12%CrMoV steels in the creep range. The model is applied to the stress relaxation analysis of power plant components. The results for long-term assessment, which are encouragingly close to reality, will be presented and discussed. An outlook on further developments of the model and assessment procedure is also provided.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3121 ◽  
Author(s):  
Xiaoli Qiu ◽  
Xianqiang Cheng ◽  
Penghao Dong ◽  
Huachen Peng ◽  
Yan Xing ◽  
...  

The Johnson-Cook (J-C) constitutive model, including five material constants (A, B, n, C, m), and the Coulomb friction coefficient (μ) are critical preprocessed data in machining simulations. Before they become reliable preprocessed data, investigating these parameters’ effect on simulation results benefits parameter-selecting. This paper aims to investigate the different influence of five settings of the J-C constitutive equation and Coulomb friction coefficient on the turning simulation results of Inconel 718 under low-high cutting conditions, including residual stress, chip morphology, cutting force and temperature. A three-dimensional (3-D) finite element model was built, meanwhile, the reliability of the model was verified by comparing the experiment with the simulation. Sensitivity analysis of J-C parameters and friction coefficient on simulation results at low-high cutting conditions was carried out by the hybrid orthogonal test. The results demonstrate that the simulation accuracy of Inconel 718 is more susceptible to strain hardening and thermal softening in the J-C constitutive model. The friction coefficient only has significant effects on axial and radial forces in the high cutting condition. The influences of the coefficient A, n, and m on the residual stress, chip thickness, cutting force and temperature are especially significant. As the cutting parameters increase, the effect of the three coefficients will change visibly. This paper provides direction for controlling simulation results through the adjustment of the J-C constitutive model of Inconel 718 and the friction coefficient.


2011 ◽  
Vol 71-78 ◽  
pp. 1073-1078
Author(s):  
Xiao Xia Guo ◽  
Bo Ya Zhao

In order to construct a constitutive model taking into the effect of both the fabric tensors and their evolution modes, this paper links modern ideas of thermomechanics opinion to the theory of fabric tensors. The anisotropic dissipation incremental function of modified Cam-clay constitutive model considering the effect of fabric characteristic can be obtained by establishing the relation between microstructure and plastic volume strain. After discussing the yield surfaces in the dissipative and the true stress space from the viewpoint of the evolution mode of the fabric tensors, the results indicate that the slope of the normal consolidation line and the critical state line will be governed by changes of void fabric. The model successfully captures most salient behaviors of granular materials related to fabric issues. In the dissipative stress space, the void of granular materials can rearrange and show more anisotropic. In the true stress space, fabric not only affects the deflection of the yield surface, but also affects the hardening rule.


Volume 1 ◽  
2004 ◽  
Author(s):  
Ali Reza Saidi ◽  
Koichi Hashiguchi

In this paper a corotational constitutive model for the large elastoplastic deformation of hardening materials using subloading surface model is formulated. This formulation is obtained by refining the large deformation theory of Naghdabadi and Saidi (2002) adopting the corotational logarithmic (Hencky) strain rate tensor and incorporating it into the subloading surface model of Hashiguchi (1980, 2003) falling within the framework of the unconventional plasticity. As an application of the proposed constitutive model, the large Elastoplastic deformation of simple shear example has been solved and the results have been compared with classical elasto-plastic model using the Hencky strain tensor. Also the effect of the choice of corotational rates on stress components has been studied.


Sign in / Sign up

Export Citation Format

Share Document