On the coherent structures and stability properties of a leading-edge separated aerofoil with turbulent recirculation

2011 ◽  
Vol 683 ◽  
pp. 395-416 ◽  
Author(s):  
V. Kitsios ◽  
L. Cordier ◽  
J.-P. Bonnet ◽  
A. Ooi ◽  
J. Soria

AbstractThe present study is motivated by a need to produce stability modes to assist in the understanding and control of unsteady separated flows. The flow configuration is a NACA 0015 aerofoil with laminar leading-edge separation and turbulent recirculation. In previous water tunnel experiments, this flow configuration was measured in an unperturbed (uncontrolled) separated state, and a harmonically perturbed (controlled) reattached state. This study presents numerical data of the unperturbed case, and recovers stability modes to describe the evolution of perturbations in this environment. The unperturbed flow is numerically generated using large eddy simulation. Its temporal properties are quantified via a Fourier analysis of the velocity time history at selected points in space. The leading-edge shear layer instability is characterized by instantaneous vortex structures, and the bluff body shedding is illustrated by proper orthogonal decomposition modes. Statistical measures of the velocity field agree well with the water tunnel measurements. Finally a stability analysis is undertaken using a triple decomposition to distinguish between the time averaged field, the unsteady scales of motion, and a coherent wave (perturbation). This analysis identifies that perturbations in the region immediately downstream of the separated shear layer have the highest spatial growth rates. The associated frequency is of the order of the sub-harmonic of the shear layer instability.

Author(s):  
Kristin Lai-Fook Cody ◽  
Stephen A. Hambric ◽  
Martin L. Pollack ◽  
Michael L. Jonson

Lock-in occurs between many different types of flow instabilities and structural-acoustic resonators. Factors that describe the coupling between the fluid and structure have been defined for low flow Mach numbers. This paper discusses how different flow instabilities influence lock-in experimentally and analytically. A key concept to the lock-in process is the relative source generation versus dissipation. The type of fluid instability source dominates the generation component of the process, so a comparison between a cavity shear layer instability with a relatively stronger source, for example wake vortex shedding from a bluff body, will be described as a coupling factor. In the fluid-elastic cavity lock-in case, the shear layer instability produced by flow over a cavity couples to the elastic structure containing the cavity. In this study, this type of lock-in was not achieved experimentally. A stronger source, vortex shedding from a bluff body however, is shown experimentally to locks into the same resonator. This study shows that fluid-elastic cavity lock-in is unlikely to occur given the critical level of damping that exists for a submerged structure and the relatively weak source strength that a cavity produces. Also in this paper, a unified theory is presented based on describing functions, a nonlinear control theory used to predict limit cycles of oscillation, where a self-sustaining oscillation or lock-in is possible. The describing function models capture the primary characteristics of the instability mechanisms, are consistent with Strouhal frequency concepts, capture damping, and are consistent with mass-damping concepts from wake oscillator theory. This study shows a strong consistency between the analytical models and experimental results.


1998 ◽  
Vol 371 ◽  
pp. 21-58 ◽  
Author(s):  
JIE-ZHI WU ◽  
XI-YUN LU ◽  
ANDREW G. DENNY ◽  
MENG FAN ◽  
JAIN-MING WU

By using a Reynolds-averaged two-dimensional computation of a turbulent flow over an airfoil at post-stall angles of attack, we show that the massively separated and disordered unsteady flow can be effectively controlled by periodic blowing–suction near the leading edge with low-level power input. This unsteady forcing can modulate the evolution of the separated shear layer to promote the formation of concentrated lifting vortices, which in turn interact with trailing-edge vortices in a favourable manner and thereby alter the global deep-stall flow field. In a certain range of post-stall angles of attack and forcing frequencies, the unforced random separated flow can become periodic or quasi-periodic, associated with a significant lift enhancement. This opens a promising possibility for flight beyond the static stall to a much higher angle of attack. The same local control also leads, in some situations, to a reduction of drag. On a part of the airfoil the pressure fluctuation is suppressed as well, which would be beneficial for high-α buffet control. The computations are in qualitative agreement with several recent post-stall flow control experiments. The physical mechanisms responsible for post-stall flow control, as observed from the numerical data, are explored in terms of nonlinear mode competition and resonance, as well as vortex dynamics. The leading-edge shear layer and vortex shedding from the trailing edge are two basic constituents of unsteady post-stall flow and its control. Since the former has a rich spectrum of response to various disturbances, in a quite wide range the natural frequency of both constituents can shift and lock-in to the forcing frequency or its harmonics. Thus, most of the separated flow becomes resonant, associated with much more organized flow patterns. During this nonlinear process the coalescence of small vortices from the disturbed leading-edge shear layer is enhanced, causing a stronger entrainment and hence a stronger lifting vortex. Meanwhile, the unfavourable trailing-edge vortex is pushed downstream. The wake pattern also has a corresponding change: the shed vortices of alternate signs tend to be aligned, forming a train of close vortex couples with stronger downwash, rather than a Kármán street.


2019 ◽  
Vol 141 (6) ◽  
Author(s):  
Kristin L. Cody ◽  
Michael L. Jonson ◽  
Martin L. Pollack ◽  
Stephen A. Hambric

AbstractLock-in flow tones can occur for many different types of flow instabilities and structural-acoustic resonators at low Mach number. This paper examines the interaction between a shear layer instability generated by flow over a shallow cavity and the modes of an elastic cantilevered beam containing the cavity. A describing function model indicates that a cavity shear layer instability capable of producing lock-in with acoustic pipe resonances cannot achieve lock-in with equivalent structural beam resonances, particularly resonances of submerged structures. Fluid-elastic cavity lock-in is unlikely to occur due to the high level of damping that exists for a submerged structure, the high fluid-loaded modal mass, and the relatively weak source strength a cavity generates. Limited experimentation using pressure, acceleration, and particle image velocimetry (PIV) measurements has been performed which are consistent with the describing function model. A stronger source produced by a larger scale flow instability—separated flow over a bluff body—was able to lock-in with modes of the same submerged structure, further demonstrating that the concern for lock-in from a cavity shear layer instability is isolated to systems capable of stronger coupling or those dominated by fluid-acoustic resonances.


2021 ◽  
Vol 143 (4) ◽  
Author(s):  
Teng Cao ◽  
Tadashi Kanzaka ◽  
Liping Xu ◽  
Tobias Brandvik

Abstract In this paper, an unsteady tip leakage flow phenomenon is identified and investigated in a centrifugal compressor with a vaneless diffuser at near-stall conditions. This phenomenon is associated with the inception of a rotating instability in the compressor. The study is based on numerical simulations that are supported by experimental measurements. The study confirms that the unstable flow is governed by a Kelvin–Helmholtz type instability of the shear layer formed between the main-stream flow and the tip leakage flow. The shear layer instability induces large-scale vortex roll-up and forms vortex tubes, which propagate circumferentially, resulting in measured pressure fluctuations with short wavelength and high amplitude which rotate at about half of the blade speed. The 3D vortex tube is also found to interact with the main blade leading edge, causing the reduction of the blade loading identified in the experiment. The paper also reveals that the downstream volute imposes a once-per-rev circumferential nonuniform back pressure at the impeller exit, inducing circumferential loading variation at the impeller inducer, and causing circumferential variation in the unsteady tip leakage flow.


2018 ◽  
Vol 857 ◽  
pp. 907-936 ◽  
Author(s):  
A. Cimarelli ◽  
A. Leonforte ◽  
D. Angeli

The separating and reattaching flows and the wake of a finite rectangular plate are studied by means of direct numerical simulation data. The large amount of information provided by the numerical approach is exploited here to address the multi-scale features of the flow and to assess the self-sustaining mechanisms that form the basis of the main unsteadinesses of the flows. We first analyse the statistically dominant flow structures by means of three-dimensional spatial correlation functions. The developed flow is found to be statistically dominated by quasi-streamwise vortices and streamwise velocity streaks as a result of flow motions induced by hairpin-like structures. On the other hand, the reverse flow within the separated region is found to be characterized by spanwise vortices. We then study the spectral properties of the flow. Given the strongly inhomogeneous nature of the flow, the spectral analysis has been conducted along two selected streamtraces of the mean velocity field. This approach allows us to study the spectral evolution of the flow along its paths. Two well-separated characteristic scales are identified in the near-wall reverse flow and in the leading-edge shear layer. The first is recognized to represent trains of small-scale structures triggering the leading-edge shear layer, whereas the second is found to be related to a very large-scale phenomenon that embraces the entire flow field. A picture of the self-sustaining mechanisms of the flow is then derived. It is shown that very-large-scale fluctuations of the pressure field alternate between promoting and suppressing the reverse flow within the separation region. Driven by these large-scale dynamics, packages of small-scale motions trigger the leading-edge shear layers, which in turn created them, alternating in the top and bottom sides of the rectangular plate with a relatively long period of inversion, thus closing the self-sustaining cycle.


2016 ◽  
Vol 804 ◽  
pp. 278-297 ◽  
Author(s):  
J. P. J. Stevenson ◽  
K. P. Nolan ◽  
E. J. Walsh

The free shear layer that separates from the leading edge of a round-nosed plate has been studied under conditions of low (background) and elevated (grid-generated) free stream turbulence (FST) using high-fidelity particle image velocimetry. Transition occurs after separation in each case, followed by reattachment to the flat surface of the plate downstream. A bubble of reverse flow is thereby formed. First, we find that, under elevated (7 %) FST, the time-mean bubble is almost threefold shorter due to an accelerated transition of the shear layer. Quadrant analysis of the Reynolds stresses reveals the presence of slender, highly coherent fluctuations amid the laminar part of the shear layer that are reminiscent of the boundary-layer streaks seen in bypass transition. Instability and the roll-up of vortices then follow near the crest of the shear layer. These vortices are also present under low FST and in both cases are found to make significant contributions to the production of Reynolds stress over the rear of the bubble. But their role in reattachment, whilst important, is not yet fully clear. Instantaneous flow fields from the low-FST case reveal that the bubble of reverse flow often breaks up into two or more parts, thereby complicating the overall reattachment process. We therefore suggest that the downstream end of the ‘separation isoline’ (the locus of zero absolute streamwise velocity that extends unbroken from the leading edge) be used to define the instantaneous reattachment point. A histogram of this point is found to be bimodal: the upstream peak coincides with the location of roll-up, whereas the downstream mode may suggest a ‘flapping’ motion.


Author(s):  
C. P. Premchand ◽  
Manikandan Raghunathan ◽  
Midhun Raghunath ◽  
K. V. Reeja ◽  
R. I. Sujith ◽  
...  

Abstract The tonal sound production during thermoacoustic instability is detrimental to the components of gas turbine and rocket engines. Identifying the root cause and controlling this oscillatory instability would enable manufacturers to save in costs of power outages and maintenance. An optimal method is to identify the structures in the flow-field that are critical to tonal sound production and perform control measures to disrupt those “critical structures”. Passive control experiments were performed by injecting a secondary micro-jet of air onto the identified regions with critical structures in the flow-field of a bluff-body stabilized, dump, turbulent combustor. Simultaneous measurements such as unsteady pressure, velocity, local and global heat release rate fluctuations are acquired in the regime of thermoacoustic instability before and after control action. The tonal sound production in this combustor is accompanied by a periodic flapping of the shear layer present in the region between the dump plane (backward-facing step) and the leading edge of the bluff-body. We obtain the trajectory of Lagrangian saddle points that dictate the flow and flame dynamics in the shear layer during thermoacoustic instability accurately by computing Lagrangian Coherent Structures. Upon injecting a secondary micro-jet with a mass flow rate of only 4% of the primary flow, nearly 90% suppression in the amplitude of pressure fluctuations are observed. The suppression thus results in sound pressure levels comparable to those obtained during stable operation of the combustor. Using Morlet wavelet transform, we see that the coherence in the dominant frequency of pressure and heat release rate oscillations during thermoacoustic instability is affected by secondary injection. The disruption of saddle point trajectories breaks the positive feedback loop between pressure and heat release rate fluctuations resulting in the observed break of coherence. Wavelet transform of global heat release rate shows a redistribution of energy content from the dominant instability frequency (acoustic time scale) to other time scales.


Sign in / Sign up

Export Citation Format

Share Document