Shear instability in a stratified fluid when shear and stratification are not aligned

2011 ◽  
Vol 685 ◽  
pp. 191-201 ◽  
Author(s):  
Julien Candelier ◽  
Stéphane Le Dizès ◽  
Christophe Millet

AbstractThe effect of an inclination angle of the shear with respect to the stratification on the linear properties of the shear instability is examined in the work. For this purpose, we consider a two-dimensional plane Bickley jet of width $L$ and maximum velocity ${U}_{0} $ in a stably stratified fluid of constant Brunt–Väisälä frequency $N$ in an inviscid and Boussinesq framework. The plane of the jet is assumed to be inclined with an angle $\theta $ with respect to the vertical direction of stratification. The stability analysis is performed using both numerical and theoretical methods for all the values of $\theta $ and Froude number $F= {U}_{0} / (LN)$. We first obtain that the most unstable mode is always a two-dimensional Kelvin–Helmholtz (KH) sinuous mode. The condition of stability based on the Richardson number $Ri\gt 1/ 4$, which reads here $F\lt 3 \sqrt{3} / 2$, is recovered for $\theta = 0$. But when $\theta \not = 0$, that is, when the directions of shear and stratification are not perfectly aligned, the Bickley jet is found to be unstable for all Froude numbers. We show that two modes are involved in the stability properties. We demonstrate that when $F$ is decreased below $3 \sqrt{3} / 2$, there is a ‘jump’ from one two-dimensional sinuous mode to another. For small Froude numbers, we show that the shear instability of the inclined jet is similar to that of a horizontal jet but with a ‘horizontal’ length scale ${L}_{h} = L/ \sin \theta $. In this regime, the characteristics (oscillation frequency, growth rate, wavenumber) of the most unstable mode are found to be proportional to $\sin \theta $. For large Froude numbers, the shear instability of the inclined jet is similar to that of a vertical jet with the same scales but with a different Froude number, ${F}_{v} = F/ \hspace *{-.1pc}\cos \theta $. It is argued that these results could be valid for any type of shear flow.

2008 ◽  
Vol 12 (3) ◽  
pp. 103-110 ◽  
Author(s):  
Aiyub Khan ◽  
Neha Sharma ◽  
P.K. Bhatia

The Kelvin-Helmholtz discontinuity in two superposed viscous conducting fluids has been investigated in the taking account of effects of surface tension, when the whole system is immersed in a uniform horizontal magnetic field. The streaming motion is assumed to be two-dimensional. The stability analysis has been carried out for two highly viscous fluid of uniform densities. The dispersion relation has been derived and solved numerically. It is found that the effect of viscosity, porosity and surface tension have stabilizing influence on the growth rate of the unstable mode, while streaming velocity has a destabilizing influence on the system.


2007 ◽  
Vol 37 (3) ◽  
pp. 625-643 ◽  
Author(s):  
Julian Simeonov ◽  
Melvin E. Stern

Abstract This paper considers the equilibration of lateral intrusions in a doubly diffusive fluid with uniform unbounded basic-state gradients in temperature and salinity. These are density compensated in the horizontal direction and finger favorable in the vertical direction. Previous nonlinear studies of this effect have qualitative and quantitative limitations because of their fictitious parameterizations of the weak “turbulence” that arises. Here, two-dimensional direct numerical simulations (DNS) that resolve scales from the smallest to the intrusive are used to predict the equilibrium state. This is achieved by numerically tilting the x–z computational box so that the mean intrusion is represented by a mode with no lateral variation, but smaller-scale 2D eddies comparable to the intrusion thickness are resolved. The DNS show that the initial plane wave intrusion evolves to an equilibrium state containing both a salt finger interface and a diffusive interface, surrounded by well-mixed layers. The inversion of the horizontally averaged density in the mixed layer is negligibly small, but the salt finger buoyancy flux produces large transient density inversions that drive the mixed layer convection. For the considered values of horizontal/vertical gradients, the calculations yield small Cox numbers and buoyancy Reynolds numbers [comparable to those measured in staircases during the Caribbean-Sheets and Layers Transects (C-SALT) program]. An important testable result is the time-averaged maximum velocity of the fastest-growing intrusion Umax = 18.0 (Σ*z/Σ*x)+1/2KT(gΘ*z/νKT)1/4. Here Θ*z is the undisturbed vertical temperature gradient in buoyancy units, Σ*z and Σ*x are the corresponding vertical and horizontal salinity gradients, g is the gravity acceleration, and ν and KT are the respective values of the molecular viscosity and heat diffusivity. The paradoxical inverse dependence on the horizontal gradient results from the assumption that the latter is unbounded.


2001 ◽  
Vol 442 ◽  
pp. 119-140 ◽  
Author(s):  
S. AMIROUDINE ◽  
P. BONTOUX ◽  
P. LARROUDÉ ◽  
B. GILLY ◽  
B. ZAPPOLI

An analysis of the hydrodynamic stability of a fluid near its near critical point – initially at rest and in thermodynamic equilibrium – is considered in the Rayleigh–Bénard configuration, i.e. heated from below. The geometry is a two-dimensional square cavity and the top and bottom walls are maintained at constant temperatures while the sidewalls are insulated. Owing to the homogeneous thermo-acoustic heating (piston effect), the thermal field exhibits a very specific structure in the vertical direction. A very thin hot thermal boundary layer is formed at the bottom, then a homogeneously heated bulk settles in the core at a lower temperature; at the top, a cooler boundary layer forms in order to continuously match the bulk temperature with the colder temperature of the upper wall. We analyse the stability of the two boundary layers by numerically solving the Navier–Stokes equations appropriate for a van der Waals' gas slightly above its critical point. A finite-volume method is used together with an acoustic filtering procedure. The onset of the instabilities in the two different layers is discussed with respect to the results of the theoretical stability analyses available in the literature and stability diagrams are derived. By accounting for the piston effect the present results can be put within the framework of the stability analysis of Gitterman and Steinberg for a single layer subjected to a uniform, steady temperature gradient.


1967 ◽  
Vol 29 (2) ◽  
pp. 233-240
Author(s):  
J. B. Hinwood

For the flow of a stably-stratified fluid in the inlet region of a rectangular duct, it is shown experimentally that the upper and lower critical Reynolds numbers are functions of the interfacial Froude number F, and that if F is large they are lower than for a homogeneous flow. In stratified flows the disturbances leading to turbulent flow sometimes arise at the interface and lead to interfacial waves, whose wavelength at breaking is equal to the conduit depth.


1975 ◽  
Vol 70 (2) ◽  
pp. 321-332 ◽  
Author(s):  
Jorg Imberger ◽  
Chris Fandry

On the basis of a small Froude number theory it is shown that previous horizontalduct models of the withdrawal of fluid from a stratified tank with a free surface and a fixed bottom are inappropriate at large times and that the flow should be modelled by that from an infinite vertical duct. The falling horizontal free surface in the tank is replaced by a vertically moving column of stratified fluid and the tank bottom is modelled by a stagnant pool of fluid below. This model is analysed and a solution uniformly valid in time is presented. The properties of the solution are then compared with existing theories and experiments.


2007 ◽  
Vol 570 ◽  
pp. 297-305 ◽  
Author(s):  
AXEL DELONCLE ◽  
JEAN-MARC CHOMAZ ◽  
PAUL BILLANT

This paper investigates the three-dimensional stability of a horizontal flow sheared horizontally, the hyperbolic tangent velocity profile, in a stably stratified fluid. In an homogeneous fluid, the Squire theorem states that the most unstable perturbation is two-dimensional. When the flow is stably stratified, this theorem does not apply and we have performed a numerical study to investigate the three-dimensional stability characteristics of the flow. When the Froude number, Fh, is varied from ∞ to 0.05, the most unstable mode remains two-dimensional. However, the range of unstable vertical wavenumbers widens proportionally to the inverse of the Froude number for Fh ≪ 1. This means that the stronger the stratification, the smaller the vertical scales that can be destabilized. This loss of selectivity of the two-dimensional mode in horizontal shear flows stratified vertically may explain the layering observed numerically and experimentally.


1964 ◽  
Vol 20 (2) ◽  
pp. 337-352 ◽  
Author(s):  
Hiroshi Sato ◽  
Fujihiko Sakao

An experimental investigation was made of the stability of a two-dimensional jet at low Reynolds numbers with extremely small residual disturbances both in and around the jet. The velocity distribution of a laminar jet is in agreement with Bickley's theoretical result. The stability and transition of a laminar jet are characterized by the Reynolds number based on the slit width and the maximum velocity of the jet. When the Reynolds number is less than 10, the whole jet is laminar. When the Reynolds number is between 10 and around 50, periodic velocity fluctuations are found in the jet. They die out as they travel downstream without developing into irregular fluctuations. When the Reynolds number exceeds about 50, periodic fluctuations develop into irregular, turbulent fluctuations. The frequency of the periodic fluctuation is roughly proportional to the square of the jet velocity.The stability of the jet against an artificially imposed disturbance was also investigated. Sound was used as an artificial disturbance. The disturbance is either amplified or damped in the jet depending on its frequency. The conventional stability theory was modified by considering the streamwise increase of Reynolds number. The experimental results are in agreement with the theoretical results.


1991 ◽  
Vol 230 ◽  
pp. 647-665 ◽  
Author(s):  
D. G. Dritschel ◽  
P. H. Haynes ◽  
M. N. Juckes ◽  
T. G. Shepherd

The quantitative effects of uniform strain and background rotation on the stability of a strip of constant vorticity (a simple shear layer) are examined. The thickness of the strip decreases in time under the strain, so it is necessary to formulate the linear stability analysis for a time-dependent basic flow. The results show that even a strain rate γ (scaled with the vorticity of the strip) as small as 0.25 suppresses the conventional Rayleigh shear instability mechanism, in the sense that the r.m.s. wave steepness cannot amplify by more than a certain factor, and must eventually decay. For γ < 0.25 the amplification factor increases as γ decreases; however, it is only 3 when γ ė 0.065. Numerical simulations confirm the predictions of linear theory at small steepness and predict a threshold value necessary for the formation of coherent vortices. The results help to explain the impression from numerous simulations of two-dimensional turbulence reported in the literature that filaments of vorticity infrequently roll up into vortices. The stabilization effect may be expected to extend to two- and three-dimensional quasi-geostrophic flows.


2012 ◽  
Vol 694 ◽  
pp. 524-539 ◽  
Author(s):  
Julien Candelier ◽  
Stéphane Le Dizès ◽  
Christophe Millet

AbstractThe three-dimensional stability of an inflection-free boundary layer flow of length scale$L$and maximum velocity${U}_{0} $in a stably stratified and compressible fluid of constant Brunt–Väisälä frequency$N$, sound speed${c}_{s} $and stratification length$H$is examined in an inviscid framework. The shear plane of the boundary layer is assumed to be inclined at an angle$\theta $with respect to the vertical direction of stratification. The stability analysis is performed using both numerical and theoretical methods for all the values of$\theta $and Froude number$F= {U}_{0} / (LN)$. When non-Boussinesq and compressible effects are negligible ($L/ H\ll 1$and${U}_{0} / {c}_{s} \ll 1$), the boundary layer flow is found to be unstable for any$F$as soon as$\theta \not = 0$. Compressible and non-Boussinesq effects are considered in the strongly stratified limit: they are shown to have no influence on the stability properties of an inclined boundary layer (when$F/ \sin \theta \ll 1$). In this limit, the instability is associated with the emission of internal-acoustic waves.


In the first part of this paper opportunity has been taken to make some adjustments in certain general formulae of previous papers, the necessity for which appeared in discussions with other workers on this subject. The general results thus amended are then applied to a general discussion of the stability problem including the effect of the trailing wake which was deliberately excluded in the previous paper. The general conclusion is that to a first approximation the wake, as usually assumed, has little or no effect on the reality of the roots of the period equation, but that it may introduce instability of the oscillations, if the centre of gravity of the element is not sufficiently far forward. During the discussion contact is made with certain partial results recently obtained by von Karman and Sears, which are shown to be particular cases of the general formulae. An Appendix is also added containing certain results on the motion of a vortex behind a moving cylinder, which were obtained to justify certain of the assumptions underlying the trail theory.


Sign in / Sign up

Export Citation Format

Share Document