On the response of large-amplitude internal waves to upstream disturbances

2012 ◽  
Vol 702 ◽  
pp. 59-88 ◽  
Author(s):  
Roberto Camassa ◽  
Claudio Viotti

AbstractLarge-amplitude internal solitary waves generate shear flows that intensify from the wings of the waves to their maxima. Upstream perturbations of the hydrostatic equilibrium in the form of wave packets along the path of wave propagation are expected to trigger shear instability and ultimately generate Kelvin–Helmholtz roll-ups. In contrast, as shown here with accurate simulations of incompressible stratified Euler equations, large internal waves can act as suppressors of perturbations. The precise understanding of the mechanisms leading to different outcomes, including whether instability is excited, is the focus of this work. Under the action of shear flows, small-amplitude wave packets undergo stretching and filamentation, which lead to significant absorption of perturbation energy into the background shear. It is found that this typical behaviour is present in the self-induced shear by internal waves, regardless of whether the shear is stable or unstable, and can leave a quieter state in the wave’s wake for a wide range of perturbation parameters. In the unstable case, even once perturbations are selected to excite the instability, our results show that this absorption can act to reduce growth in the strong-shear region, effectively making roll-up development observable only downstream of the wave crest. Our approach is both analytical and numerical; a model valid for relatively thin pycnoclines and suitable for local spectral analysis is devised and used. Energy diagnostics on the simulations are implemented to validate the numerics and illustrate the energy exchanges between background wave flow and its shear. A link between the absorption mechanism and the clustering of local eigenvalues along the wave is proposed. This promotes an energetic coupling among neutral modes stronger than what may be expected to occur in slowly varying flows, and gives rise to multi-modal transient dynamics of the kind often referred to as non-normality effects. For those cases in which the wave-induced shear meets the conditions for local instability, it is found that the growth of disturbances is selective with respect to the sign of the mode excited upstream. Elements of this phenomenon are interpreted by asymptotic analysis for spatial growth in time-independent slowly varying media.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. Mendes ◽  
J. C. B. da Silva ◽  
J. M. Magalhaes ◽  
B. St-Denis ◽  
D. Bourgault ◽  
...  

AbstractInternal waves (IWs) in the ocean span across a wide range of time and spatial scales and are now acknowledged as important sources of turbulence and mixing, with the largest observations having 200 m in amplitude and vertical velocities close to 0.5 m s−1. Their origin is mostly tidal, but an increasing number of non-tidal generation mechanisms have also been observed. For instance, river plumes provide horizontally propagating density fronts, which were observed to generate IWs when transitioning from supercritical to subcritical flow. In this study, satellite imagery and autonomous underwater measurements are combined with numerical modeling to investigate IW generation from an initial subcritical density front originating at the Douro River plume (western Iberian coast). These unprecedented results may have important implications in near-shore dynamics since that suggest that rivers of moderate flow may play an important role in IW generation between fresh riverine and coastal waters.


2001 ◽  
Vol 428 ◽  
pp. 349-386 ◽  
Author(s):  
E. J. STRANG ◽  
H. J. S. FERNANDO

The results of a laboratory experiment designed to study turbulent entrainment at sheared density interfaces are described. A stratified shear layer, across which a velocity difference ΔU and buoyancy difference Δb is imposed, separates a lighter upper turbulent layer of depth D from a quiescent, deep lower layer which is either homogeneous (two-layer case) or linearly stratified with a buoyancy frequency N (linearly stratified case). In the parameter ranges investigated the flow is mainly determined by two parameters: the bulk Richardson number RiB = ΔbD/ΔU2 and the frequency ratio fN = ND=ΔU.When RiB > 1.5, there is a growing significance of buoyancy effects upon the entrainment process; it is observed that interfacial instabilities locally mix heavy and light fluid layers, and thus facilitate the less energetic mixed-layer turbulent eddies in scouring the interface and lifting partially mixed fluid. The nature of the instability is dependent on RiB, or a related parameter, the local gradient Richardson number Rig = N2L/ (∂u/∂z)2, where NL is the local buoyancy frequency, u is the local streamwise velocity and z is the vertical coordinate. The transition from the Kelvin–Helmholtz (K-H) instability dominated regime to a second shear instability, namely growing Hölmböe waves, occurs through a transitional regime 3.2 < RiB < 5.8. The K-H activity completely subsided beyond RiB ∼ 5 or Rig ∼ 1. The transition period 3.2 < RiB < 5 was characterized by the presence of both K-H billows and wave-like features, interacting with each other while breaking and causing intense mixing. The flux Richardson number Rif or the mixing efficiency peaked during this transition period, with a maximum of Rif ∼ 0.4 at RiB ∼ 5 or Rig ∼ 1. The interface at 5 < RiB < 5.8 was dominated by ‘asymmetric’ interfacial waves, which gradually transitioned to (symmetric) Hölmböe waves at RiB > 5:8.Laser-induced fluorescence measurements of both the interfacial buoyancy flux and the entrainment rate showed a large disparity (as large as 50%) between the two-layer and the linearly stratified cases in the range 1.5 < RiB < 5. In particular, the buoyancy flux (and the entrainment rate) was higher when internal waves were not permitted to propagate into the deep layer, in which case more energy was available for interfacial mixing. When the lower layer was linearly stratified, the internal waves appeared to be excited by an ‘interfacial swelling’ phenomenon, characterized by the recurrence of groups or packets of K-H billows, their degeneration into turbulence and subsequent mixing, interfacial thickening and scouring of the thickened interface by turbulent eddies.Estimation of the turbulent kinetic energy (TKE) budget in the interfacial zone for the two-layer case based on the parameter α, where α = (−B + ε)/P, indicated an approximate balance (α ∼ 1) between the shear production P, buoyancy flux B and the dissipation rate ε, except in the range RiB < 5 where K-H driven mixing was active.


2015 ◽  
Vol 15 (13) ◽  
pp. 7667-7684 ◽  
Author(s):  
Fuqing Zhang ◽  
Junhong Wei ◽  
Meng Zhang ◽  
K. P. Bowman ◽  
L. L. Pan ◽  
...  

Abstract. This study analyzes in situ airborne measurements from the 2008 Stratosphere–Troposphere Analyses of Regional Transport (START08) experiment to characterize gravity waves in the extratropical upper troposphere and lower stratosphere (ExUTLS). The focus is on the second research flight (RF02), which took place on 21–22 April 2008. This was the first airborne mission dedicated to probing gravity waves associated with strong upper-tropospheric jet–front systems. Based on spectral and wavelet analyses of the in situ observations, along with a diagnosis of the polarization relationships, clear signals of mesoscale variations with wavelengths ~ 50–500 km are found in almost every segment of the 8 h flight, which took place mostly in the lower stratosphere. The aircraft sampled a wide range of background conditions including the region near the jet core, the jet exit and over the Rocky Mountains with clear evidence of vertically propagating gravity waves of along-track wavelength between 100 and 120 km. The power spectra of the horizontal velocity components and potential temperature for the scale approximately between ~ 8 and ~ 256 km display an approximate −5/3 power law in agreement with past studies on aircraft measurements, while the fluctuations roll over to a −3 power law for the scale approximately between ~ 0.5 and ~ 8 km (except when this part of the spectrum is activated, as recorded clearly by one of the flight segments). However, at least part of the high-frequency signals with sampled periods of ~ 20–~ 60 s and wavelengths of ~ 5–~ 15 km might be due to intrinsic observational errors in the aircraft measurements, even though the possibilities that these fluctuations may be due to other physical phenomena (e.g., nonlinear dynamics, shear instability and/or turbulence) cannot be completely ruled out.


2008 ◽  
Vol 602 ◽  
pp. 303-326 ◽  
Author(s):  
E. PLAUT ◽  
Y. LEBRANCHU ◽  
R. SIMITEV ◽  
F. H. BUSSE

A general reformulation of the Reynolds stresses created by two-dimensional waves breaking a translational or a rotational invariance is described. This reformulation emphasizes the importance of a geometrical factor: the slope of the separatrices of the wave flow. Its physical relevance is illustrated by two model systems: waves destabilizing open shear flows; and thermal Rossby waves in spherical shell convection with rotation. In the case of shear-flow waves, a new expression of the Reynolds–Orr amplification mechanism is obtained, and a good understanding of the form of the mean pressure and velocity fields created by weakly nonlinear waves is gained. In the case of thermal Rossby waves, results of a three-dimensional code using no-slip boundary conditions are presented in the nonlinear regime, and compared with those of a two-dimensional quasi-geostrophic model. A semi-quantitative agreement is obtained on the flow amplitudes, but discrepancies are observed concerning the nonlinear frequency shifts. With the quasi-geostrophic model we also revisit a geometrical formula proposed by Zhang to interpret the form of the zonal flow created by the waves, and explore the very low Ekman-number regime. A change in the nature of the wave bifurcation, from supercritical to subcritical, is found.


PLoS ONE ◽  
2013 ◽  
Vol 8 (11) ◽  
pp. e81834 ◽  
Author(s):  
Carin Jantzen ◽  
Gertraud M. Schmidt ◽  
Christian Wild ◽  
Cornelia Roder ◽  
Somkiat Khokiattiwong ◽  
...  

2016 ◽  
Vol 9 (3) ◽  
pp. 877-908 ◽  
Author(s):  
Corwin J. Wright ◽  
Neil P. Hindley ◽  
Andrew C. Moss ◽  
Nicholas J. Mitchell

Abstract. Gravity waves in the terrestrial atmosphere are a vital geophysical process, acting to transport energy and momentum on a wide range of scales and to couple the various atmospheric layers. Despite the importance of these waves, the many studies to date have often exhibited very dissimilar results, and it remains unclear whether these differences are primarily instrumental or methodological. Here, we address this problem by comparing observations made by a diverse range of the most widely used gravity-wave-resolving instruments in a common geographic region around the southern Andes and Drake Passage, an area known to exhibit strong wave activity. Specifically, we use data from three limb-sounding radiometers (Microwave Limb Sounder, MLS-Aura; HIgh Resolution Dynamics Limb Sounder, HIRDLS; Sounding of the Atmosphere using Broadband Emission Radiometry, SABER), the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) GPS-RO constellation, a ground-based meteor radar, the Advanced Infrared Sounder (AIRS) infrared nadir sounder and radiosondes to examine the gravity wave potential energy (GWPE) and vertical wavelengths (λz) of individual gravity-wave packets from the lower troposphere to the edge of the lower thermosphere ( ∼  100 km). Our results show important similarities and differences. Limb sounder measurements show high intercorrelation, typically  > 0.80 between any instrument pair. Meteor radar observations agree in form with the limb sounders, despite vast technical differences. AIRS and radiosonde observations tend to be uncorrelated or anticorrelated with the other data sets, suggesting very different behaviour of the wave field in the different spectral regimes accessed by each instrument. Evidence of wave dissipation is seen, and varies strongly with season. Observed GWPE for individual wave packets exhibits a log-normal distribution, with short-timescale intermittency dominating over a well-repeated monthly-median seasonal cycle. GWPE and λz exhibit strong correlations with the stratospheric winds, but not with local surface winds. Our results provide guidance for interpretation and intercomparison of such data sets in their full context.


1996 ◽  
Vol 74 (1-2) ◽  
pp. 4-9
Author(s):  
M. R. M. Witwit

The energy levels of a three-dimensional system are calculated for the rational potentials,[Formula: see text]using the inner-product technique over a wide range of values of the perturbation parameters (λ, g) and for various eigenstates. The numerical results for some special cases agree with those of previous workers where available.


2021 ◽  
Vol 49 (2) ◽  
pp. 155-163
Author(s):  
S. M. Shapovalov

March 15, 2021 Chief Researcher, Head of the Laboratory of Hydrological Processes of the P.P. Shirshov Institute of Oceanology of the Russian Academy of Sciences, DSc, ex-president of the International Association for Physical Ocean Sciences (IAPSO) Evgeny Morozov is 75 years old. E.G. Morozov is a prominent scientist and organizer of world-class science in the field of studying the temporal and spatial variability of hydrological processes and internal waves in a wide range of scales. He was the first to build a map of the amplitudes of tidal internal waves of the World Ocean. His monograph “Oceanic Internal Waves” published in 1985 in Russian, as well as his article “Semidiurnal internal wave global field”, published in the Deep Sea Research in 1995, are among the most cited on the problem of internal tidal waves. Unique results were obtained by E.G. Morozov in the study of internal waves in the Arctic, including under the ice and near the front of glaciers sliding into the ocean on Spitsbergen. He made a significant contribution to the study of various currents: the Gulf Stream, the Kuroshio and their rings, the Antarctic Circumpolar Current, the California Current, the Falkland Current, the Lomonosov and Tareev subsurface equatorial currents. Since 1999 he has been a member of the Executive Committee of the International Association for the Physical Sciences of the Ocean (IAPSO) and since 2011 he has been elected President of the IAPSO, represented the IAPSO in this capacity on the Executive Committee of the International Geodetic and Geophysical Union (IUGG) and on the Executive Committee of the Scientific Committee on Oceanic research (SCOR). E.G. Morozov is the chairman of the Ocean Physical Sciences Section of the National Geophysical Committee of the Russian Academy of Sciences.


Sign in / Sign up

Export Citation Format

Share Document