Unsteady nearshore natural convection induced by constant isothermal surface heating

2012 ◽  
Vol 707 ◽  
pp. 342-368 ◽  
Author(s):  
Yadan Mao ◽  
Chengwang Lei ◽  
John C. Patterson

AbstractThe present investigation is concerned with natural convection in a wedge-shaped domain induced by constant isothermal heating at the water surface. Complementary to the study of daytime heating by solar radiation relevant to nearshore regions of lakes and reservoirs previously reported by the same authors, this study focuses on sensible heating imposed by the atmosphere when it is warmer than the water body. A semi-analytical approach coupled with scaling analysis and numerical simulation is adopted to resolve the problem. Two flow regimes are identified depending on the comparison between the Rayleigh number and the inverse of the square of the bottom slope. For the lower Rayleigh number regime, the entire flow domain eventually becomes isothermal and stationary. For the higher Rayleigh number regime, the flow domain is composed of two distinct subregions, a conductive subregion near the shore and a convective subregion offshore. Within the conductive subregion, the maximum local flow velocity occurs when the thermal boundary layer reaches the local bottom, and the subregion eventually becomes isothermal and stationary. In the offshore convective subregion, a steady state is reached with a distinct thermal boundary layer below the surface and a steady flow velocity. The dividing position between the two subregions and the major time and velocity scales governing the flow development in both subregions are proposed by the scaling analysis and validated by corresponding numerical simulation.

2002 ◽  
Vol 460 ◽  
pp. 181-209 ◽  
Author(s):  
CHENGWANG LEI ◽  
JOHN C. PATTERSON

The authors have previously reported a model experiment on the unsteady natural convection in a triangular domain induced by the absorption of solar radiation. This issue is reconsidered here both analytically and numerically. The present study consists of two parts: a scaling analysis and a numerical simulation. The scaling analysis for small bottom slopes reveals that a number of flow regimes are possible depending on the Rayleigh number and the relative value of certain non-dimensional parameters describing the flow. In a typical situation, the flow can be classified broadly into a conductive, a transitional or a convective regime determined merely by the Rayleigh number. Proper scales have been established to quantify the flow properties in each of these flow regimes. The numerical simulation has verified the scaling results.


2014 ◽  
Vol 764 ◽  
pp. 219-249 ◽  
Author(s):  
Peng Yu ◽  
John C. Patterson ◽  
Chengwang Lei

AbstractThis study presents a detailed scaling analysis quantifying the transient behaviour of natural convection in a reservoir model induced by iso-flux surface heating. It is found that horizontal conduction, which has often been neglected in previous analyses, plays an important role in the development of the flow. Depending on the Rayleigh number, three possible pathways through which the flow develops towards the final steady state are identified. A thermal boundary layer initially grows downwards from the surface. When the thermal boundary layer reaches the sloping bottom and becomes indistinct, a horizontal temperature gradient establishes due to the increasing water depth in the offshore direction. A flow is then driven towards the offshore direction by a buoyancy-induced horizontal pressure gradient, which convects away the heat input from the water surface. On the other hand, the horizontal temperature gradient also conducts heat away. The flow behaviour is determined by the interaction between the horizontal conduction and convection. An interesting flow feature revealed by the present scaling analysis is that the region across which the thermal boundary layer encompasses the full water depth shrinks over time at a certain stage of the flow development. The shrinking process eventually stops when this region coincides with a conduction-dominated subregion. The present scaling results are verified by corresponding numerical simulations.


2014 ◽  
Vol 18 (2) ◽  
pp. 555-561 ◽  
Author(s):  
Bulent Kozanoglu ◽  
Francisco Rubio

Natural convection from a downward facing horizontal heated plate was analyzed. An expression for the thickness of the thermal boundary layer was obtained in terms of Rayleigh number. Assuming this thickness as the characteristic length of the problem, the data published by other authors were modified and an equation for Nusselt number is presented. It was observed that this equation correlates the data more precisely than the commonly known equations in the literature that employ the ratio of the area to the perimeter or the shorter side of the plate as the characteristic length. It is concluded that taking the thermal boundary layer as the characteristic length of phenomenon is a proper approach and correlates all the data closely.


2009 ◽  
Vol 622 ◽  
pp. 75-102 ◽  
Author(s):  
YADAN MAO ◽  
CHENGWANG LEI ◽  
JOHN C. PATTERSON

The present study is concerned with radiation-induced natural convection in a water-filled triangular enclosure with a sloping bottom, which is directly relevant to buoyancy-driven flows in littoral regions. An improved scaling analysis is carried out to reveal more detailed features of the flow than a previously reported analysis. Two critical functions of the Rayleigh number with respect to the horizontal position are derived from the scaling for identifying the distinctness and stability of the thermal boundary layer. Four flow scenarios are possible, depending on the bottom slope and the maximum water depth. For each flow scenario, the flow domain may be composed of multiple subregions with distinct thermal and flow features, depending on the Rayleigh number. The dividing points between neighbouring subregions are determined by comparisons of the critical functions of the Rayleigh number with the global Rayleigh number. Position-dependent scales have been established to quantify the flow properties in different subregions. The different flow regimes for the case with relatively large bottom slopes and shallow waters are examined in detail. The present scaling results are verified by numerical simulations.


2021 ◽  
Author(s):  
Haoyu Zhai ◽  
Juan F. Torres ◽  
Yongling Zhao ◽  
Feng Xu

Abstract Natural convection in air over a heated section-triangular roof with a fixed aspect ratio of 0.1 is experimentally investigated. The development of the flow over the roof subject to a range of temperatures is measured by digital interferometry and thermocouples. The experiments present distinct images of the thermal boundary layer, which changes from a quasi-steady to an unsteady state as the surface temperature of the triangular roof increases. Contrary to numerical simulations previously published, the observed flow becomes unsteady, which is very likely influenced by uncontrolled perturbations at the critical Rayleigh number where a pitchfork bifurcation of a steady flow is theoretically expected.


1991 ◽  
Vol 224 ◽  
pp. 335-359 ◽  
Author(s):  
M. Grae Worster

Governing equations for a mushy layer are analysed in the asymptotic regime Rm [Gt ] 1, where Rm is an appropriately defined Rayleigh number. A model is proposed in which there is downward flow everywhere in the mushy layer except in and near localized chimneys, which are characterized by having zero solid fraction. Upward, convective flow within the chimneys is driven by compositional buoyancy. The radius of each chimney is determined locally by thermal balances within a boundary layer that surrounds it. Simple solutions are derived to determine the structure of the mushy layer away from the immediate vicinity of chimneys in order to demonstrate the gross effects of convection upon the solidification within the layer.


Sign in / Sign up

Export Citation Format

Share Document