Turbulence in transient channel flow

2013 ◽  
Vol 715 ◽  
pp. 60-102 ◽  
Author(s):  
S. He ◽  
M. Seddighi

AbstractDirect numerical simulations (DNS) are performed of a transient channel flow following a rapid increase of flow rate from an initially turbulent flow. It is shown that a low-Reynolds-number turbulent flow can undergo a process of transition that resembles the laminar–turbulent transition. In response to the rapid increase of flow rate, the flow does not progressively evolve from the initial turbulent structure to a new one, but undergoes a process involving three distinct phases (pre-transition, transition and fully turbulent) that are equivalent to the three regions of the boundary layer bypass transition, namely, the buffeted laminar flow, the intermittent flow and the fully turbulent flow regions. This transient channel flow represents an alternative bypass transition scenario to the free-stream-turbulence (FST) induced transition, whereby the initial flow serving as the disturbance is a low-Reynolds-number turbulent wall shear flow with pre-existing streaky structures. The flow nevertheless undergoes a ‘receptivity’ process during which the initial structures are modulated by a time-developing boundary layer, forming streaks of apparently specific favourable spacing (of about double the new boundary layer thickness) which are elongated streamwise during the pre-transitional period. The structures are stable and the flow is laminar-like initially; but later in the transitional phase, localized turbulent spots are generated which grow spatially, merge with each other and eventually occupy the entire wall surfaces when the flow becomes fully turbulent. It appears that the presence of the initial turbulent structures does not promote early transition when compared with boundary layer transition of similar FST intensity. New turbulent structures first appear at high wavenumbers extending into a lower-wavenumber spectrum later as turbulent spots grow and join together. In line with the transient energy growth theory, the maximum turbulent kinetic energy in the pre-transitional phase grows linearly but only in terms of ${u}^{\ensuremath{\prime} } $, whilst ${v}^{\ensuremath{\prime} } $ and ${w}^{\ensuremath{\prime} } $ remain essentially unchanged. The energy production and dissipation rates are very low at this stage despite the high level of ${u}^{\ensuremath{\prime} } $. The pressure–strain term remains unchanged at that time, but increases rapidly later during transition along with the generation of turbulent spots, hence providing an unambiguous measure for the onset of transition.

1997 ◽  
Vol 119 (4) ◽  
pp. 794-801 ◽  
Author(s):  
J. Luo ◽  
B. Lakshminarayana

The boundary layer development and convective heat transfer on transonic turbine nozzle vanes are investigated using a compressible Navier–Stokes code with three low-Reynolds-number k–ε models. The mean-flow and turbulence transport equations are integrated by a four-stage Runge–Kutta scheme. Numerical predictions are compared with the experimental data acquired at Allison Engine Company. An assessment of the performance of various turbulence models is carried out. The two modes of transition, bypass transition and separation-induced transition, are studied comparatively. Effects of blade surface pressure gradients, free-stream turbulence level, and Reynolds number on the blade boundary layer development, particularly transition onset, are examined. Predictions from a parabolic boundary layer code are included for comparison with those from the elliptic Navier–Stokes code. The present study indicates that the turbine external heat transfer, under real engine conditions, can be predicted well by the Navier–Stokes procedure with the low-Reynolds-number k–ε models employed.


2016 ◽  
Vol 792 ◽  
pp. 682-711 ◽  
Author(s):  
Michael O. John ◽  
Dominik Obrist ◽  
Leonhard Kleiser

The leading-edge boundary layer (LEBL) in the front part of swept airplane wings is prone to three-dimensional subcritical instability, which may lead to bypass transition. The resulting increase of airplane drag and fuel consumption implies a negative environmental impact. In the present paper, we present a temporal biglobal secondary stability analysis (SSA) and direct numerical simulations (DNS) of this flow to investigate a subcritical transition mechanism. The LEBL is modelled by the swept Hiemenz boundary layer (SHBL), with and without wall suction. We introduce a pair of steady, counter-rotating, streamwise vortices next to the attachment line as a generic primary disturbance. This generates a high-speed streak, which evolves slowly in the streamwise direction. The SSA predicts that this flow is unstable to secondary, time-dependent perturbations. We report the upper branch of the secondary neutral curve and describe numerous eigenmodes located inside the shear layers surrounding the primary high-speed streak and the vortices. We find secondary flow instability at Reynolds numbers as low as$Re\approx 175$, i.e. far below the linear critical Reynolds number$Re_{crit}\approx 583$of the SHBL. This secondary modal instability is confirmed by our three-dimensional DNS. Furthermore, these simulations show that the modes may grow until nonlinear processes lead to breakdown to turbulent flow for Reynolds numbers above$Re_{tr}\approx 250$. The three-dimensional mode shapes, growth rates, and the frequency dependence of the secondary eigenmodes found by SSA and the DNS results are in close agreement with each other. The transition Reynolds number$Re_{tr}\approx 250$at zero suction and its increase with wall suction closely coincide with experimental and numerical results from the literature. We conclude that the secondary instability and the transition scenario presented in this paper may serve as a possible explanation for the well-known subcritical transition observed in the leading-edge boundary layer.


Author(s):  
Ashley D. Scillitoe ◽  
Paul G. Tucker ◽  
Paolo Adami

Large Eddy Simulation (LES) is used to explore the boundary layer transition mechanisms in two rectilinear compressor cascades. To reduce numerical dissipation, a novel locally adaptive smoothing scheme is added to an unstructured finite-volume solver. The performance of a number of Sub-Grid Scale (SGS) models is explored. With the first cascade, numerical results at two different freestream turbulence intensities (Ti’s), 3.25% and 10%, are compared. At both Ti’s, time-averaged skin-friction and pressure coefficient distributions agree well with previous Direct Numerical Simulations (DNS). At Ti = 3.25%, separation induced transition occurs on the suction surface, whilst it is bypassed on the pressure surface. The pressure surface transition is dominated by modes originating from the convection of Tollmien-Schlichting waves by Klebanoff streaks. However, they do not resembled a classical bypass transition. Instead, they display characteristics of the “overlap” and “inner” transition modes observed in the previous DNS. At Ti = 10%, classical bypass transition occurs, with Klebanoff streaks incepting turbulent spots. With the second cascade, the influence of unsteady wakes on transition is examined. Wake-amplified Klebanoff streaks were found to instigate turbulent spots, which periodically shorten the suction surface separation bubble. The celerity line corresponding to 70% of the free-stream velocity, which is associated with the convection speed of the amplified Klebanoff streaks, was found to be important.


2019 ◽  
Vol 872 ◽  
pp. 198-217 ◽  
Author(s):  
Duosi Fan ◽  
Jinglei Xu ◽  
Matthew X. Yao ◽  
Jean-Pierre Hickey

A novel approach to identify internal interfacial layers, or IILs, in wall-bounded turbulent flows is proposed. Using a fuzzy cluster method (FCM) on the streamwise velocity component, a unique and unambiguous grouping of the uniform momentum zones (UMZs) is achieved, thus allowing the identification of the IILs. The approach overcomes some of the key limitations of the histogram-based IIL identification methods. The method is insensitive to the streamwise domain length, can be used on inhomogeneous grids, uses all the available flow field data, is trivially extended to three dimensions and does not need user-defined parameters (e.g. number of bins) other than the number of zones. The number of zones for a given snapshot can be automatically determined by an a priori algorithm based on a kernel density estimation algorithm, or KDE. This automated approach is applied to compute the average number of UMZs as a function of Reynolds number $Re_{\unicode[STIX]{x1D70F}}$ in turbulent channel flows in several numerical simulations. This systematic approach reveals a dependence of the Reynolds number on the average number of UMZs in the channel flow; this supports previously reported observations in the boundary layer. The fuzzy clustering approach is applied to the turbulent boundary layer (experimental, planar particle image velocimetry) and channel flow (numerical, direct numerical simulation) at varying Reynolds numbers. The interfacial layers are characterized by a strong concentration of spanwise vorticity, with the outer-most layer located at the upper edge of the log layer. The three-dimensional interface identification reveals a streak-like organization. The large-scale motion (LSM) at the outer region of the channel flow boundary layer modulates the outer IIL. The corrugations of the outer IIL are aligned with the LSM and the conditional correlation of the inner and outer IIL height shows that extreme near-wall events leave their mark on the outer IIL corrugations.


Author(s):  
Ling Zhen ◽  
Claudia del Carmen Gutierrez-Torres

The question of “where and how the turbulent drag arises” is one of the most fundamental problems unsolved in fluid mechanics. However, the physical mechanism responsible for the friction drag reduction is still not well understood. Over decades, it is found that the turbulence production and self-containment in a boundary layer are organized phenomena and not random processes as the turbulence looks like. The further study in the boundary layer should be able to help us know more about the mechanisms of drag reduction. The wavelet-based vector multi-resolution technique was proposed and applied to the two dimensional PIV velocities for identifying the multi-scale turbulent structures. The intermediate and small scale vortices embedded within the large-scale vortices were separated and visualized. By analyzing the fluctuating velocities at different scales, coherent eddy structures were obtained and this help us obtain the important information on the multi-scale flow structures in the turbulent flow. By comparing the eddy structures in different operating conditions, the mechanism to explain the drag reduction caused by micro bubbles in turbulent flow was proposed.


1999 ◽  
Vol 398 ◽  
pp. 109-153 ◽  
Author(s):  
XIAOHUA WU ◽  
ROBERT G. JACOBS ◽  
JULIAN C. R. HUNT ◽  
PAUL A. DURBIN

The interaction between an initially laminar boundary layer developing spatially on a flat plate and wakes traversing the inlet periodically has been simulated numerically. The three-dimensional, time-dependent Navier–Stokes equations were solved with 5.24×107 grid points using a message passing interface on a scalable parallel computer. The flow bears a close resemblance to the transitional boundary layer on turbomachinery blades and was designed following, in outline, the experiments by Liu & Rodi (1991). The momentum thickness Reynolds number evolves from Reθ = 80 to 1120. Mean and second-order statistics downstream of Reθ = 800 are of canonical flat-plate turbulent boundary layers and are in good agreement with Spalart (1988).In many important aspects the mechanism leading to the inception of turbulence is in agreement with previous fundamental studies on boundary layer bypass transition, as summarized in Alfredsson & Matsubara (1996). Inlet wake disturbances inside the boundary layer evolve rapidly into longitudinal puffs during an initial receptivity phase. In the absence of strong forcing from free-stream vortices, these structures exhibit streamwise elongation with gradual decay in amplitude. Selective intensification of the puffs occurs when certain types of turbulent eddies from the free-stream wake interact with the boundary layer flow through a localized instability. Breakdown of the puffs into young turbulent spots is preceded by a wavy motion in the velocity field in the outer part of the boundary layer.Properties and streamwise evolution of the turbulent spots following breakdown, as well as the process of completion of transition to turbulence, are in agreement with previous engineering turbomachinery flow studies. The overall geometrical characteristics of the matured turbulent spot are in good agreement with those observed in the experiments of Zhong et al. (1998). When breakdown occurs in the outer layer, where local convection speed is large, as in the present case, the spots broaden downstream, having the vague appearance of an arrowhead pointing upstream.The flow has also been studied statistically. Phase-averaged velocity fields and skin-friction coefficients in the transitional region show similar features to previous cascade experiments. Selected results from additional thought experiments and simulations are also presented to illustrate the effects of streamwise pressure gradient and free-stream turbulence.


1960 ◽  
Vol 9 (2) ◽  
pp. 235-246 ◽  
Author(s):  
J. W. Elder

The theory of hydrodynamic stability and the impact on it of recent work with turbulent spots is discussed. Emmons's (1951) assumptions about the growth and interaction of turbulent spots are found experimentally to be substantially correct. In particular it is shown that the region of turbulent flow on a flat plate is simply the sum of the areas that would be obtained if all spots grew independently.An investigation of the conditions required for breakdown to turbulence near a wall, that is, to initiate a turbulent spot, suggests that regardless of how disturbances are generated in a laminar boundary layer and independent of both the Reynolds number and the spatial extent of the disturbances, breakdown to turbulence occurs by the initiation of a turbulent spot at all points at which the velocity fluctuation exceeds a critical intensity. Over most of the layer this intensity is about 0·2 times the free-stream velocity. The Reynolds number is important merely in respect of the growth of disturbances prior to breakdown.


1991 ◽  
Vol 44 (12) ◽  
pp. 517-531 ◽  
Author(s):  
Gerald C. Lauchle

Transitional boundary layers exist on surfaces and bodies operating in viscous fluids at speeds such that the critical Reynolds number based on the distance from the leading edge is exceeded. The transition region is composed of a simultaneous mixture of both laminar and turbulent regimes occurring randomly in space and time. The turbulent regimes are known as turbulent spots, they grow rapidly with downstream distance, and they ultimately coalesce to form the beginning of fully-developed turbulent boundary-layer flow. It has been long suspected that such a region of unsteadiness may give rise to local pressure fluctuations and radiated sound that are different from those created by the fully-developed turbulent boundary layer at equivalent Reynolds number. This article reviews the available literature on this subject. The emphasis of this literature is on natural and artificially created transitional boundary layers under mostly incompressible conditions; hence, the word hydroacoustics in the title. The topics covered include the dynamics and local wall pressure fluctuations due to the passage of turbulent spots created in a deterministic way, the pressure fluctuations under transitioning boundary layers where the formation and location of spots are random, and the acoustic radiation from transition and its pre-cursor, the Tollmien-Schlichting waves. The majority of this review is for zero-pressure gradient flat plate flows, but the limited literature on axisymmetric body and plate flows with pressure gradient is included.


Sign in / Sign up

Export Citation Format

Share Document